917 resultados para VARIABLE SEPARATION APPROACH
Resumo:
In this paper, we present a microphone array beamforming approach to blind speech separation. Unlike previous beamforming approaches, our system does not require a-priori knowledge of the microphone placement and speaker location, making the system directly comparable other blind source separation methods which require no prior knowledge of recording conditions. Microphone location is automatically estimated using an assumed noise field model, and speaker locations are estimated using cross correlation based methods. The system is evaluated on the data provided for the PASCAL Speech Separation Challenge 2 (SSC2), achieving a word error rate of 58% on the evaluation set.
Resumo:
The transmission path from the excitation to the measured vibration on the surface of a mechanical system introduces a distortion both in amplitude and in phase. Moreover, in variable speed conditions, the amplification/attenuation and the phase shift, due to the transfer function of the mechanical system, varies in time. This phenomenon reduces the effectiveness of the traditionally tachometer based order tracking, compromising the results of a discrete-random separation performed by a synchronous averaging. In this paper, for the first time, the extent of the distortion is identified both in the time domain and in the order spectrum of the signal, highlighting the consequences for the diagnostics of rotating machinery. A particular focus is given to gears, providing some indications on how to take advantage of the quantification of the disturbance to better tune the techniques developed for the compensation of the distortion. The full theoretical analysis is presented and the results are applied to an experimental case.
Resumo:
Phase separation resulting in a single-crystal-single-crystal transition accompanied by a polycrystalline phase following the dehydration of hydrated bimetallic sulfates [Na2Mn1.167(SO4)(2)S0.33O1.167 center dot 2H(2)O and K4Cd3-(SO4)(5)center dot 3H(2)O] has been investigated by in situ variable-temperature single-crystal X-ray diffraction. With two examples, we illustrate the possibility of generating structural frameworks following dehydration in bimetallic sulfates, which refer to the possible precursor phases at that temperature leading to the mineral formation. The room-temperature structure of Na2Mn1.167(SO4)(2)S0.33O1.167 center dot 2H(2)O is trigonal, space group R (3) over bar. On heating the crystal in situ on the diffractometer, the diffraction images display spherical spots and concentric rings suggesting phase separation, with the spherical spots getting indexed in a monoclinic space group, C2/c. The structure determination based on this data suggests the formation of Na2Mn(SO4)(2). However, the diffraction images from concentric rings could not be indexed. In the second example, the room-temperature structure is determined to be K4Cd3(SO4)(5)center dot 3H(2)O, crystallizing in a monoclinic space group, P2(1)/n. On heating the crystal in situ, the diffraction images collected also have both spherical spots and diffuse rings. The spherical spots could be indexed to a cubic crystal system, space group P2(1)3, and the structure is K4Cd3(SO4)(3). The possible mechanism for the phase transition in the dehydration regime resulting in this remarkable single-crystal to single-crystal transition with the appearance of a surrogate polycrystalline phase is proposed.
Resumo:
The classical problem of surface water-wave scattering by two identical thin vertical barriers submerged in deep water and extending infinitely downwards from the same depth below the mean free surface, is reinvestigated here by an approach leading to the problem of solving a system of Abel integral equations. The reflection and transmission coefficients are obtained in terms of computable integrals. Known results for a single barrier are recovered as a limiting case as the separation distance between the two barriers tends to zero. The coefficients are depicted graphically in a number of figures which are identical with the corresponding figures given by Jarvis (J Inst Math Appl 7:207-215, 1971) who employed a completely different approach involving a Schwarz-Christoffel transformation of complex-variable theory to solve the problem.
Resumo:
The synthesis of monodisperse nanocrystals is an important topic in the field of nanomaterials not only for practical applications, but also for scientific interest in fundamental research. In this feature article, we mainly focus on synthesis of monodisperse nanocrystals by a two-phase approach without the separation of nucleation and growth processes, and report some progress made recently in the observation and understanding of nucleation and growth of semiconductor nanocrystals. Firstly, a novel two-phase approach to monodisperse nanocrystals, which is different from the well-established synthesis models, is discussed. We demonstrate that the two-phase approach has a quite lengthy nucleation process, and can be applied to the synthesis of many kinds of binary monodisperse nanocrystals.
Resumo:
The increasing demand for fast air transportation around the clock
has increased the number of night flights in civil aviation over
the past few decades. In night aviation, to land an aircraft, a
pilot needs to be able to identify an airport. The approach
lighting system (ALS) at an airport is used to provide
identification and guidance to pilots from a distance. ALS
consists of more than $100$ luminaires which are installed in a
defined pattern following strict guidelines by the International
Civil Aviation Organization (ICAO). ICAO also has strict
regulations for maintaining the performance level of the
luminaires. However, once installed, to date there is no automated
technique by which to monitor the performance of the lighting. We
suggest using images of the lighting pattern captured using a camera
placed inside an aircraft. Based on the information contained
within these images, the performance of the luminaires has to be
evaluated which requires identification of over $100$ luminaires
within the pattern of ALS image. This research proposes analysis
of the pattern using morphology filters which use a variable
length structuring element (VLSE). The dimension of the VLSE changes
continuously within an image and varies for different images.
A novel
technique for automatic determination of the VLSE is proposed and
it allows successful identification of the luminaires from the
image data as verified through the use of simulated and real data.