993 resultados para VARIABLE MASS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Performance in cross-country skiing is influenced by the skier’s ability to continuously produce propelling forces and force magnitude in relation to the net external forces. A surrogate indicator of the “power supply” in cross-country skiing would be a physiological variable that reflects an important performance-related capability, whereas the body mass itself is an indicator of the “power demand” experienced by the skier. To adequately evaluate an elite skier’s performance capability, it is essential to establish the optimal ratio between the physiological variable and body mass. The overall aim of this doctoral thesis was to investigate the importance of body-mass exponent optimization for the evaluation of performance capability in cross-country skiing. Methods In total, 83 elite cross-country skiers (56 men and 27 women) volunteered to participate in the four studies. The physiological variables of maximal oxygen uptake (V̇O2max) and oxygen uptake corresponding to a blood-lactate concentration of 4 mmol∙l-1 (V̇O2obla) were determined while treadmill roller skiing using the diagonal-stride technique; mean oxygen uptake (V̇O2dp) and upper-body power output (Ẇ) were determined during double-poling tests using a ski-ergometer. Competitive performance data for elite male skiers were collected from two 15-km classical-technique skiing competitions and a 1.25-km sprint prologue; additionally, a 2-km double-poling roller-skiing time trial using the double-poling technique was used as an indicator of upper-body performance capability among elite male and female junior skiers. Power-function modelling was used to explain the race and time-trial speeds based on the physiological variables and body mass. Results The optimal V̇O2max-to-mass ratios to explain 15-km race speed were V̇O2max divided by body mass raised to the 0.48 and 0.53 power, and these models explained 68% and 69% of the variance in mean skiing speed, respectively; moreover, the 95% confidence intervals (CI) for the body-mass exponents did not include either 0 or 1. For the modelling of race speed in the sprint prologue, body mass failed to contribute to the models based on V̇O2max, V̇O2obla, and V̇O2dp. The upper-body power output-to-body mass ratio that optimally explained time-trial speed was Ẇ ∙ m-0.57 and the model explained 63% of the variance in speed. Conclusions The results in this thesis suggest that V̇O2max divided by the square root of body mass should be used as an indicator of performance in 15-km classical-technique races among elite male skiers rather than the absolute or simple ratio-standard scaled expression. To optimally explain an elite male skier’s performance capability in sprint prologues, power-function models based on oxygen-uptake variables expressed absolutely are recommended. Moreover, to evaluate elite junior skiers’ performance capabilities in 2-km double-poling roller-skiing time trials, it is recommended that Ẇ divided by the square root of body mass should be used rather than absolute or simple ratio-standard scaled expression of power output.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of sulfated zirconia films from a sol-gel derived aqueous suspension is subjected to double-optical monitoring during batch dip coating. Interpretation of interferometric patterns, previously obscured by a variable refractive index, is now made possible by addition of its direct measurement by a polarimetric technique in real time. Significant sensitivity of the resulting physical thickness and refractive index curves (uncertainties of ±7 nm and ±0.005, respectively) to temporal film evolution is shown under different withdrawal speeds. As a first contribution to quantitative understanding of temporal film formation with varying nanostructure during dip coating, detailed analysis is directed to the stage of the process dominated by mass drainage, whose simple modeling with temporal t-1/2 dependence is verified experimentally. © 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Puberty is the fundamental period for bone mass (BM) acquisition. In this period mineralization is found to increase with levels of high bone formation. The critical years of intense bone anabolism deserve special attention, as adequate gain could minimize fracture risk in later years. The objective of this work was to study bone mineral content (BMC) and bone mineral density (BMD) in male adolescents with age bracket and maturation level. Sixty-one healthy male 10 to 19 year-olds were evaluated for calcium intake, weight, stature, BMI, puberty stage and BMC and BMD in the lumbar spine and femur. BM was measured by bone densitometry (DXA). Calcium intake was calculated by recording 3 days diet. Puberty stage was defined as per Tanner. Descriptive statistics was used with means and standard deviations, linear correlation, and analysis of variance for comparison between age groups, and the Tukey test (p<0.05). Linear correlation was positive and indicated body weight as the main correlation variable with BMD in both studied locations (p<0.01). BMC and BMD increased with age, differences were significant from 14 to 15 years, and when adolescents reached Tanner stage G4. These results showed a pronounced increase in bone mineralization, with the years after 14 to 15 being critical for BM acquisition in Brazilian adolescents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A search for supersymmetry in final states with jets and missing transverse energy is performed in pp collisions at a centre-of-mass energy of s=7 TeV. The data sample corresponds to an integrated luminosity of 4.98 fb-1 collected by the CMS experiment at the LHC. In this search, a dimensionless kinematic variable, α T, is used as the main discriminator between events with genuine and misreconstructed missing transverse energy. The search is performed in a signal region that is binned in the scalar sum of the transverse energy of jets and the number of jets identified as originating from a bottom quark. No excess of events over the standard model expectation is found. Exclusion limits are set in the parameter space of the constrained minimal supersymmetric extension of the standard model, and also in simplified models, with a special emphasis on compressed spectra and third-generation scenarios.[Figure not available: see fulltext.] © 2013 CERN for the benefit of the CMS Collaboration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new series of donor acceptor copolymers were synthesized via the Witting route and applied as an active layer in organic thin-films solar cells. These copolymers are composed of fluorene thiophene and phenylene thiophene units. The ratio between those was systematically varied, and copolymers containing 0%, 50%, and 75% of phenylene thiophene were characterized and evaluated when used in photovoltaic devices. The copolymers' composition, photophysical, electrical, and morphological properties are addressed and correlated with device performance. The 50% copolymer ratio was found to be the best copolymer of the series, yielding a power conversion efficiency (PCE) under air mass (AM) 1.5 conditions of 2.4% in the bilayer heterojunction with the C-60 molecule. Aiming at flexible electronics applications, solutions based on the heterojunction of this copolymer with PCBM (6,6-phenyl-C-61-butyric acid methyl ester) were also successfully deposited using an inkjet printing method and used as an active layer in solar cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infarct size (IS) increases with vascular occlusion time, area at risk for infarction, lack of collateral supply, absence of preconditioning, and myocardial demand for O2 supply. ECG S-T segment elevation is used as a measure of severity of ischemia and a surrogate for IS. This study in 50 patients with coronary artery disease undergoing a first 120-s balloon occlusion of a stenosis sought to determine whether S-T segment elevation, corrected for the above-mentioned variables, in the left coronary artery (LCA group, n = 36) is different from that in the right coronary artery (RCA group, n = 14) territory. After consideration of all known determinants of IS, particularly mass at risk and collateral supply, the LCA territory is more sensitive than the RCA region to a 2-min period of myocardial ischemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a fast and unambiguous method for haplotyping the (TG)mTn repeat in IVS8 and determining three other single nucleotide polymorphisms (SNPs) in exons 10, 14a and 24 in the cystic fibrosis transmembrane conductance regulator (CFTR) gene affecting correct splicing of the CFTR pre-mRNA using primer extension and mass spectrometry. The diagnostic products are generated by primer extension (PEX) reactions, which require a single detection primer complementary to a region downstream of a target strand's variable site. On addition of a polymerase and an appropriate mixture of dNTP's and 2', 3'-dideoxynucleotide triphosphates (ddNTP's), the primer is extended through the mutation region until the first ddNTP is incorporated and the mass of the extension products determines the composition of the variable site. Analysis of patient DNA assigned the correct and unambiguous haplotype for the (TG)mTn repeat in intron 8 of the CFTR gene. Additional crucial SNPs influencing correct splicing in exon 10, 14 and 24 can easily be detected by biplexing the assay to genotype allelic variants important for correct splicing of the CFTR pre-mRNA. Different PEX reactions with subsequent mass spectrometry generate sufficient data, to enable unambiguous and easy haplotyping of the (TG)mTn repeat in the CFTR gene. The method can be easily extended to the inclusion of additional SNPs of interest by biplexing some of the PEX reactions. All experimental steps required for PEX are amenable to the high degree of automation desirable for a high-throughput diagnostic setting, facilitating the work of clinicians involved in the diagnosis of non-classic cystic fibrosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Duplications and deletions in the human genome can cause disease or predispose persons to disease. Advances in technologies to detect these changes allow for the routine identification of submicroscopic imbalances in large numbers of patients. METHODS: We tested for the presence of microdeletions and microduplications at a specific region of chromosome 1q21.1 in two groups of patients with unexplained mental retardation, autism, or congenital anomalies and in unaffected persons. RESULTS: We identified 25 persons with a recurrent 1.35-Mb deletion within 1q21.1 from screening 5218 patients. The microdeletions had arisen de novo in eight patients, were inherited from a mildly affected parent in three patients, were inherited from an apparently unaffected parent in six patients, and were of unknown inheritance in eight patients. The deletion was absent in a series of 4737 control persons (P=1.1x10(-7)). We found considerable variability in the level of phenotypic expression of the microdeletion; phenotypes included mild-to-moderate mental retardation, microcephaly, cardiac abnormalities, and cataracts. The reciprocal duplication was enriched in nine children with mental retardation or autism spectrum disorder and other variable features (P=0.02). We identified three deletions and three duplications of the 1q21.1 region in an independent sample of 788 patients with mental retardation and congenital anomalies. CONCLUSIONS: We have identified recurrent molecular lesions that elude syndromic classification and whose disease manifestations must be considered in a broader context of development as opposed to being assigned to a specific disease. Clinical diagnosis in patients with these lesions may be most readily achieved on the basis of genotype rather than phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a need by engine manufactures for computationally efficient and accurate predictive combustion modeling tools for integration in engine simulation software for the assessment of combustion system hardware designs and early development of engine calibrations. This thesis discusses the process for the development and validation of a combustion modeling tool for Gasoline Direct Injected Spark Ignited Engine with variable valve timing, lift and duration valvetrain hardware from experimental data. Data was correlated and regressed from accepted methods for calculating the turbulent flow and flame propagation characteristics for an internal combustion engine. A non-linear regression modeling method was utilized to develop a combustion model to determine the fuel mass burn rate at multiple points during the combustion process. The computational fluid dynamic software Converge ©, was used to simulate and correlate the 3-D combustion system, port and piston geometry to the turbulent flow development within the cylinder to properly predict the experimental data turbulent flow parameters through the intake, compression and expansion processes. The engine simulation software GT-Power © is then used to determine the 1-D flow characteristics of the engine hardware being tested to correlate the regressed combustion modeling tool to experimental data to determine accuracy. The results of the combustion modeling tool show accurate trends capturing the combustion sensitivities to turbulent flow, thermodynamic and internal residual effects with changes in intake and exhaust valve timing, lift and duration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental work and analysis was done to investigate engine startup robustness and emissions of a flex-fuel spark ignition (SI) direct injection (DI) engine. The vaporization and other characteristics of ethanol fuel blends present a challenge at engine startup. Strategies to reduce the enrichment requirements for the first engine startup cycle and emissions for the second and third fired cycle at 25°C ± 1°C engine and intake air temperature were investigated. Research work was conducted on a single cylinder SIDI engine with gasoline and E85 fuels, to study the effect on first fired cycle of engine startup. Piston configurations that included a compression ratio change (11 vs 15.5) and piston geometry change (flattop vs bowl) were tested, along with changes in intake cam timing (95,110,125) and fuel pressure (0.4 MPa vs 3 MPa). The goal was to replicate the engine speed, manifold pressure, fuel pressure and testing temperature from an engine startup trace for investigating the first fired cycle for the engine. Results showed bowl piston was able to enable lower equivalence ratio engine starts with gasoline fuel, while also showing lower IMEP at the same equivalence ratio compared to flat top piston. With E85, bowl piston showed reduced IMEP as compression ratio increased at the same equivalence ratio. A preference for constant intake valve timing across fuels seemed to indicate that flattop piston might be a good flex-fuel piston. Significant improvements were seen with higher CR bowl piston with high fuel pressure starts, but showed no improvement with low fuel pressures. Simulation work was conducted to analyze initial three cycles of engine startup in GT-POWER for the same set of hardware used in the experimentations. A steady state validated model was modified for startup conditions. The results of which allowed an understanding of the relative residual levels and IMEP at the test points in the cam phasing space. This allowed selecting additional test points that enable use of higher residual levels, eliminating those with smaller trapped mass incapable of producing required IMEP for proper engine turnover. The second phase of experimental testing results for 2nd and 3rd startup cycle revealed both E10 and E85 prefer the same SOI of 240°bTDC at second and third startup cycle for the flat top piston and high injection pressures. E85 fuel optimal cam timing for startup showed that it tolerates more residuals compared to E10 fuel. Higher internal residuals drives down the Ø requirement for both fuels up to their combustion stability limit, this is thought to be direct benefit to vaporization due to increased cycle start temperature. Benefits are shown for an advance IMOP and retarded EMOP strategy at engine startup. Overall the amount of residuals preferred by an engine for E10 fuel at startup is thought to be constant across engine speed, thus could enable easier selection of optimized cam positions across the startup speeds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mediastinal mass syndrome remains an anaesthetic challenge that cannot be underestimated. Depending on the localization and the size of the mediastinal tumour, the clinical presentation is variable ranging from a complete lack of symptoms to severe cardiorespiratory problems. The administration of general anaesthesia can be associated with acute intraoperative or postoperative cardiorespiratory decompensation that may result in death due to tumour-related compression syndromes. The role of the anaesthesiologist, as a part of the interdisciplinary treatment team, is to ensure a safe perioperative period. However, there is still no structured protocol available for perioperative anaesthesiological procedure. The aim of this article is to summarize the genesis of and the diagnostic options for mediastinal mass syndrome and to provide a solid detailed methodology for its safe perioperative management based on a review of the latest literature and our own clinical experiences. Proper anaesthetic management of patients with mediastinal mass syndrome begins with an assessment of the preoperative status, directed foremost at establishing the localization of the tumour and on the basis of the clinical and radiological findings, discerning whether any vital mediastinal structures are affected. We have found it helpful to assign 'severity grade' (using a three-grade clinical classification scale: 'safe', 'uncertain', 'unsafe'), whereby each stage triggers appropriate action in terms of staffing and apparatus, such as the provision of alternatives for airway management, cardiopulmonary bypass and additional specialists. During the preoperative period, we are guided by a 12-point plan that also takes into account the special features of transportation into the operating theatre and patient monitoring. Tumour compression on the airways or the great vessels may create a critical respiratory and/or haemodynamic situation, and therefore the standard of intraoperative management includes induction of anaesthesia in the operating theatre on an adjustable surgical table, the use of short-acting anaesthetics, avoidance of muscle relaxants and maintenance of spontaneous respiration. In the case of severe clinical symptoms and large mediastinal tumours, we consider it absolutely essential to cannulate the femoral vessels preoperatively under local anaesthesia and to provide for the availability of cardiopulmonary bypass in the operating theatre, should extracorporeal circulation become necessary. The benefits of establishing vascular access under local anaesthesia clearly outweigh any associated degree of patient discomfort. In the case of patients classified as 'safe' or 'uncertain', a preoperative consensus with the surgeons should be reached as to the anaesthetic approach and the management of possible complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[1] In the event of a termination of the Gravity Recovery and Climate Experiment (GRACE) mission before the launch of GRACE Follow-On (due for launch in 2017), high-low satellite-to-satellite tracking (hl-SST) will be the only dedicated observing system with global coverage available to measure the time-variable gravity field (TVG) on a monthly or even shorter time scale. Until recently, hl-SST TVG observations were of poor quality and hardly improved the performance of Satellite Laser Ranging observations. To date, they have been of only very limited usefulness to geophysical or environmental investigations. In this paper, we apply a thorough reprocessing strategy and a dedicated Kalman filter to Challenging Minisatellite Payload (CHAMP) data to demonstrate that it is possible to derive the very long-wavelength TVG features down to spatial scales of approximately 2000 km at the annual frequency and for multi-year trends. The results are validated against GRACE data and surface height changes from long-term GPS ground stations in Greenland. We find that the quality of the CHAMP solutions is sufficient to derive long-term trends and annual amplitudes of mass change over Greenland. We conclude that hl-SST is a viable source of information for TVG and can serve to some extent to bridge a possible gap between the end-of-life of GRACE and the availability of GRACE Follow-On.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many persons in the U.S. gain weight during young adulthood, and the prevalence of obesity has been increasing among young adults. Although obesity and physical inactivity are generally recognized as risk factors for coronary heart disease (CHD), the magnitude of their effect on risk may have been seriously underestimated due to failure to adequately handle the problem of cigarette smoking. Since cigarette smoking causes weight loss, physically inactive cigarette smokers may remain relatively lean because they smoke cigarettes. We hypothesize cigarette smoking modifies the association between weight gain during young adulthood and risk of coronary heart disease during middle age, and that the true effect of weight gain during young adulthood on risk of CHD can be assessed only in persons who have not smoked cigarettes. Specifically, we hypothesize that weight gain during young adulthood is positively associated with risk of CHD during middle-age in nonsmokers but that the association is much smaller or absent entirely among cigarette smokers. The purpose of this study was to test this hypothesis. The population for analysis was comprised of 1,934 middle-aged, employed men whose average age at the baseline examination was 48.7 years. Information collected at the baseline examinations in 1958 and 1959 included recalled weight at age 20, present weight, height, smoking status, and other CHD risk factors. To decrease the effect of intraindividual variation, the mean values of the 1958 and 1959 baseline examinations were used in analyses. Change in body mass index ($\Delta$BMI) during young adulthood was the primary exposure variable and was measured as BMI at baseline (kg/m$\sp2)$ minus BMI at age 20 (kg/m$\sp2).$ Proportional hazards regression analysis was used to generate relative risks of CHD mortality by category of $\Delta$BMI and cigarette smoking status after adjustment for age, family history of CVD, major organ system disease, BMI at age 20, and number of cigarettes smoked per day. Adjustment was not performed for systolic blood pressure or total serum cholesterol as these were regarded as intervening variables. Vital status was known for all men on the 25th anniversary of their baseline examinations. 705 deaths (including 319 CHD deaths) occurred over 40,136 person-years of experience. $\Delta$BMI was positively associated with risk of CHD mortality in never-smokers, but not in ever-smokers (p for interaction = 0.067). For never-smokers with $\Delta$BMI of stable, low gain, moderate gain, and high gain, adjusted relative risks were 1.00, 1.62, 1.61, and 2.78, respectively (p for trend = 0.010). For ever-smokers, with $\Delta$BMI of stable, low gain, moderate gain, and high gain, adjusted relative risks were 1.00, 0.74, 1.07, and 1.06, respectively (p for trend = 0.422). These results support the research hypothesis that cigarette smoking modifies the association between weight gain and CHD mortality. Current estimates of the magnitude of effect of obesity and physical inactivity on risk of coronary mortality may have been seriously underestimated due to inadequate handling of cigarette smoking. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The time variable Earth’s gravity field contains information about the mass transport within the system Earth, i.e., the relationship between mass variations in the atmosphere, oceans, land hydrology, and ice sheets. For many years, satellite laser ranging (SLR) observations to geodetic satellites have provided valuable information of the low-degree coefficients of the Earth’s gravity field. Today, the Gravity Recovery and Climate Experiment (GRACE) mission is the major source of information for the time variable field of a high spatial resolution. We recover the low-degree coefficients of the time variable Earth’s gravity field using SLR observations up to nine geodetic satellites: LAGEOS-1, LAGEOS-2, Starlette, Stella, AJISAI, LARES, Larets, BLITS, and Beacon-C. We estimate monthly gravity field coefficients up to degree and order 10/10 for the time span 2003–2013 and we compare the results with the GRACE-derived gravity field coefficients. We show that not only degree-2 gravity field coefficients can be well determined from SLR, but also other coefficients up to degree 10 using the combination of short 1-day arcs for low orbiting satellites and 10-day arcs for LAGEOS-1/2. In this way, LAGEOS-1/2 allow recovering zonal terms, which are associated with long-term satellite orbit perturbations, whereas the tesseral and sectorial terms benefit most from low orbiting satellites, whose orbit modeling deficiencies are minimized due to short 1-day arcs. The amplitudes of the annual signal in the low-degree gravity field coefficients derived from SLR agree with GRACE K-band results at a level of 77 %. This implies that SLR has a great potential to fill the gap between the current GRACE and the future GRACE Follow-On mission for recovering of the seasonal variations and secular trends of the longest wavelengths in gravity field, which are associated with the large-scale mass transport in the system Earth.