986 resultados para V(ALPHA)14 NKT CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

NK T cells produce cytokines when their semi-invariant TCR engages glycolipids associated with CD1d. The physiological consequences of NKT cell activation remain controversial, although they have been implicated in control of autoimmunity, parasites and tumors. We show here that specific activation of NKT cells in liver and spleen leads to a rapid induction of extensive NK cell proliferation and cytotoxicity. This NK cell activation is dependent, at least in part, on IFN-gamma production by NKT cells and IL-12 production by antigen-presenting cells. Remarkably, activation of NK cells by NKT cells is highly selective, since bystander T and B lymphocytes show transient expression of activation markers but almost no proliferation. Collectively our data suggest that CD1d-dependent NKT cells regulate innate immunity by sampling blood-borne glycolipid antigens and rapidly activating NK cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent years have seen so-called natural killer T (NKT) cells emerge as important regulators of the immune response. The existence of NKT-cell subsets, and other types of T cell that resemble NKT cells, is an ongoing source of confusion in the literature. This perspective article seeks to clarify which cells fall under the NKT-cell umbrella, and which might be best considered as separate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invariant natural killer T (iNKT) cells as we know them today are a unique subset of mature T cells co-expressing a semi-invariant Valpha14/Vbeta8 TCR and surface markers characteristic of NK cells. The semi-invariant TCR on iNKT cells recognizes glycolipids bound to monomorphic CD1d molecules, leading to rapid cytokine production. The purpose of this historical perspective is to describe how a series of seemingly unrelated findings in the late 1980s and early 1990s crystallized in the discovery of iNKT cells. The story is told from a personal viewpoint, with a particular effort to place both breakthroughs and misinterpretations in the context of their era.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Puhe

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural killer T (NKT) cells express a T cell receptor (TCR) and markers common to NK cells, including NK1.1. In vivo, NKT cells are triggered by anti-CD3epsilon MAb to rapidly produce large amounts of IL-4 and by IL-12 to reject tumors. We show here that anti-CD3epsilon MAb treatment rapidly depletes the liver (and partially the spleen) of NKT cells and that homeostasis is achieved 1 to 2 days later via NKT cell proliferation that occurs mainly in bone marrow. Similar results were obtained in mice treated with IL-12. Collectively, our data demonstrate that peripheral NKT cells are highly sensitive to activation-induced cell death and that bone marrow plays a major role in restoring NKT cell homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose exerts inverse effects upon the secretory function of islet alpha- and beta-cells, suppressing glucagon release and increasing insulin release. This diverse action may result from differences in glucose transport and metabolism between the two cell types. The present study compares glucose transport in rat alpha- and beta-cells. beta-Cells transcribed GLUT2 and, to a lesser extent, GLUT 1; alpha-cells contained GLUT1 but no GLUT2 mRNA. No other GLUT-like sequences were found among cDNAs from alpha- or beta-cells. Both cell types expressed 43-kDa GLUT1 protein which was enhanced by culture. The 62-kDa beta-cell GLUT2 protein was converted to a 58-kDa protein after trypsin treatment of the cells without detectable consequences upon glucose transport kinetics. In beta-cells, the rates of glucose transport were 10-fold higher than in alpha-cells. In both cell types, glucose uptake exceeded the rates of glucose utilization by a factor of 10 or more. Glycolytic flux, measured as D-[5(3)H]glucose utilization, was comparable in alpha- and beta-cells between 1 and 10 mmol/liter substrate. In conclusion, differences in glucose transporter gene expression between alpha- and beta-cells can be correlated with differences in glucose transport kinetics but not with different glucose utilization rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Valpha14 invariant natural killer T (Valpha14i NKT) cells are a unique lineage of mouse T cells that share properties with both NK cells and memory T cells. Valpha14i NKT cells recognize CDld-associated glycolipids via a semi-invariant T cell receptor (TCR) composed of an invariant Valpha14-Jalpha 18 chain paired preferentially with a restricted set of TCRbeta chains. During development in the thymus, rare CD4+ CD8+ (DP) cortical thymocytes that successfully rearrange the semi-invariant TCR are directed to the Valpha14i NKT cell lineage via interactions with CD d-associated endogenous glycolipids expressed by other DP thymocytes. As they mature, Valphal4i NKT lineage cells upregulate activation markers such as CD44 and subsequently express NK-related molecules such as NKI.1 and members of the Ly-49 inhibitory receptor family. The developmental program of Valpha l4i NKT cells is critically regulated by a number of signaling cues that have little or no effect on conventional T cell development, such as the Fyn/SAP/SLAM pathway, NFkappaB and T-bet transcription factors, and the cytokine IL-15. The unique developmental requirements of Valphal4i NKT cells may represent a paradigm for other unconventional T cell subsets that are positively selected by agonist ligands expressed on hematopoietic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invariant NKT (iNKT) cells play key roles in host defense by recognizing lipid Ags presented by CD1d. iNKT cells are activated by bacterial-derived lipids and are also strongly autoreactive toward self-lipids. iNKT cell responsiveness must be regulated to maintain effective host defense while preventing uncontrolled stimulation and potential autoimmunity. CD1d-expressing thymocytes support iNKT cell development, but thymocyte-restricted expression of CD1d gives rise to Ag hyperresponsive iNKT cells. We hypothesized that iNKT cells require functional education by CD1d(+) cells other than thymocytes to set their correct responsiveness. In mice that expressed CD1d only on thymocytes, hyperresponsive iNKT cells in the periphery expressed significantly reduced levels of tyrosine phosphatase SHP-1, a negative regulator of TCR signaling. Accordingly, heterozygous SHP-1 mutant mice displaying reduced SHP-1 expression developed a comparable population of Ag hyperresponsive iNKT cells. Restoring nonthymocyte CD1d expression in transgenic mice normalized SHP-1 expression and iNKT cell reactivity. Radiation chimeras revealed that CD1d(+) dendritic cells supported iNKT cell upregulation of SHP-1 and decreased responsiveness after thymic emigration. Hence, dendritic cells functionally educate iNKT cells by tuning SHP-1 expression to limit reactivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to its proinflammatory effects, TNF-alpha exhibits immunosuppression. Here, we compared the capacities of transmembrane TNF-alpha (tmTNF) and soluble TNF-alpha (sTNF) in regulating expansion of activated T cells by apoptosis. Splenic CD4(+) T cells from wtTNF, TNF-alpha-deficient (TNF(-/-)) and TNF(-/-) mice expressing a non-cleavable mutant tmTNF showed comparable proliferation rates upon TCR-mediated stimulation. Activation-induced cell death (AICD), however, was significantly attenuated in tmTNF and TNF(-/-), compared with wtTNF CD4(+) T cells. Addition of sTNF during initial priming was sufficient to enhance susceptibility to AICD in tmTNF and TNF(-/-) CD4(+) T cells to levels seen in wtTNF CD4(+) T cells, whereas addition of sTNF only during restimulation failed to enhance AICD. sTNF-induced, enhanced susceptibility to AICD was dependent on both TNF receptors. The reduced susceptibility of tmTNF CD4(+) T cells for AICD was also evident in an in vivo model of adoptively transferred CD4(+) T-cell-mediated colonic inflammation. Hence, the presence of sTNF during T-cell priming may represent an important mechanism to sensitize activated T cells for apoptosis, thereby attenuating the extent and duration of T-cell reactivities and subsequent T-cell-mediated, excessive inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III?V materials on silicon for photovoltaic applications. When manufacturing a multi-junction solar cell on silicon, one of the first processes to be addressed is the development of the bottom subcell and, in particular, the formation of its emitter. In this study, we analyze, both experimentally and by simulations, the formation of the emitter as a result of phosphorus diffusion that takes place during the first stages of the epitaxial growth of the solar cell. Different conditions for the Metal-Organic Vapor Phase Epitaxy (MOVPE) process have been evaluated to understand the impact of each parameter, namely, temperature, phosphine partial pressure, time exposure and memory effects in the final diffusion profiles obtained. A model based on SSupremIV process simulator has been developed and validated against experimental profiles measured by ECV and SIMS to calculate P diffusion profiles in silicon formed in a MOVPE environment taking in consideration all these factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonradiative recombination in inverted GaInP junctions is dramatically reduced using a rear-heterojunction design rather than the more traditional thin-emitter homojunction design. When this GaInP junction design is included in inverted multijunction solar cells, the high radiative efficiency translates into both higher subcell voltage and high luminescence coupling to underlying subcells, both of which contribute to improved performance. Subcell voltages within two and four junction devices are measured by electroluminescence and the internal radiative efficiency is quantified as a function of recombination current using optical modeling. The performance of these concentrator multijunction devices is compared with the Shockley–Queisser detailed-balance radiative limit, as well as an internal radiative limit, which considers the effects of the actual optical environment in which a perfect junction may exist.