931 resultados para Urban Simulation Model
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Includes bibliography
Resumo:
Faced with an imminent restructuring of the electric power system, over the past few years many countries have invested in a new paradigm known as Smart Grid. This paradigm targets optimization and automation of electric power network, using advanced information and communication technologies. Among the main communication protocols for Smart Grids we have the DNP3 protocol, which provides secure data transmission with moderate rates. The IEEE 802.15.4 is another communication protocol also widely used in Smart Grid, especially in the so-called Home Area Network (HAN). Thus, many applications of Smart Grid depends on the interaction of these two protocols. This paper proposes modeling, in the traditional network simulator NS-2, the integration of DNP3 protocol and the IEEE 802.15.4 wireless standard for low cost simulations of Smart Grid applications.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study summarises all the accessible data on old German chemical weapons dumped in the Baltic Sea. Mr. Goncharov formulated a concept of ecological impact evaluation of chemical warfare agents (CWA) on the marine environment and structured a simulation model adapted to the specific character of the hydrological condition and hydrobiological subjects of the Bornholm Deep. The mathematical model he has created describes the spreading of contaminants by currents and turbulence in the near bottom boundary layer. Parameters of CWA discharge through corrosion of canisters were given for various kinds of bottom sediments with allowance for current velocity. He created a method for integral estimations and a computer simulation model and completed a forecast for CWA "Mustard", which showed that in normal hydrometeorological conditions there are local toxic plumes drifting along the bottom for a distance of up to several kilometres. With storm winds the toxic plumes from separate canisters interflow and lengthen and can reach fishery areas near Bornholm Island. When salt water from the North Sea flows in, the length of toxic zones can increase up to and over 100 kilometres and toxic water masses can spread into the northern Baltic. On this basis, Mr. Goncharov drew up recommendations to reduce dangers for human ecology and proposed the creation of a special system for the forecasting and remote sensing of the environmental conditions of CWA burial places.
Resumo:
To mitigate greenhouse gas (GHG) emissions and reduce U.S. dependence on imported oil, the United States (U.S.) is pursuing several options to create biofuels from renewable woody biomass (hereafter referred to as “biomass”). Because of the distributed nature of biomass feedstock, the cost and complexity of biomass recovery operations has significant challenges that hinder increased biomass utilization for energy production. To facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization and tapping unused forest residues, it is proposed to develop biofuel supply chain models based on optimization and simulation approaches. The biofuel supply chain is structured around four components: biofuel facility locations and sizes, biomass harvesting/forwarding, transportation, and storage. A Geographic Information System (GIS) based approach is proposed as a first step for selecting potential facility locations for biofuel production from forest biomass based on a set of evaluation criteria, such as accessibility to biomass, railway/road transportation network, water body and workforce. The development of optimization and simulation models is also proposed. The results of the models will be used to determine (1) the number, location, and size of the biofuel facilities, and (2) the amounts of biomass to be transported between the harvesting areas and the biofuel facilities over a 20-year timeframe. The multi-criteria objective is to minimize the weighted sum of the delivered feedstock cost, energy consumption, and GHG emissions simultaneously. Finally, a series of sensitivity analyses will be conducted to identify the sensitivity of the decisions, such as the optimal site selected for the biofuel facility, to changes in influential parameters, such as biomass availability and transportation fuel price. Intellectual Merit The proposed research will facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization in the renewable biofuel industry. The GIS-based facility location analysis considers a series of factors which have not been considered simultaneously in previous research. Location analysis is critical to the financial success of producing biofuel. The modeling of woody biomass supply chains using both optimization and simulation, combing with the GIS-based approach as a precursor, have not been done to date. The optimization and simulation models can help to ensure the economic and environmental viability and sustainability of the entire biofuel supply chain at both the strategic design level and the operational planning level. Broader Impacts The proposed models for biorefineries can be applied to other types of manufacturing or processing operations using biomass. This is because the biomass feedstock supply chain is similar, if not the same, for biorefineries, biomass fired or co-fired power plants, or torrefaction/pelletization operations. Additionally, the research results of this research will continue to be disseminated internationally through publications in journals, such as Biomass and Bioenergy, and Renewable Energy, and presentations at conferences, such as the 2011 Industrial Engineering Research Conference. For example, part of the research work related to biofuel facility identification has been published: Zhang, Johnson and Sutherland [2011] (see Appendix A). There will also be opportunities for the Michigan Tech campus community to learn about the research through the Sustainable Future Institute.
Resumo:
A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.
Resumo:
In this paper, a simulation model of glucose-insulin metabolism for Type 1 diabetes patients is presented. The proposed system is based on the combination of Compartmental Models (CMs) and artificial Neural Networks (NNs). This model aims at the development of an accurate system, in order to assist Type 1 diabetes patients to handle their blood glucose profile and recognize dangerous metabolic states. Data from a Type 1 diabetes patient, stored in a database, have been used as input to the hybrid system. The data contain information about measured blood glucose levels, insulin intake, and description of food intake, along with the corresponding time. The data are passed to three separate CMs, which produce estimations about (i) the effect of Short Acting (SA) insulin intake on blood insulin concentration, (ii) the effect of Intermediate Acting (IA) insulin intake on blood insulin concentration, and (iii) the effect of carbohydrate intake on blood glucose absorption from the gut. The outputs of the three CMs are passed to a Recurrent NN (RNN) in order to predict subsequent blood glucose levels. The RNN is trained with the Real Time Recurrent Learning (RTRL) algorithm. The resulted blood glucose predictions are promising for the use of the proposed model for blood glucose level estimation for Type 1 diabetes patients.
Resumo:
Simulation techniques are almost indispensable in the analysis of complex systems. Materials- and related information flow processes in logistics often possess such complexity. Further problem arise as the processes change over time and pose a Big Data problem as well. To cope with these issues adaptive simulations are more and more frequently used. This paper presents a few relevant advanced simulation models and intro-duces a novel model structure, which unifies modelling of geometrical relations and time processes. This way the process structure and their geometric relations can be handled in a well understandable and transparent way. Capabilities and applicability of the model is also presented via a demonstrational example.
Evaluation of control and surveillance strategies for classical swine fever using a simulation model
Resumo:
Classical swine fever (CSF) outbreaks can cause enormous losses in naïve pig populations. How to best minimize the economic damage and number of culled animals caused by CSF is therefore an important research area. The baseline CSF control strategy in the European Union and Switzerland consists of culling all animals in infected herds, movement restrictions for animals, material and people within a given distance to the infected herd and epidemiological tracing of transmission contacts. Additional disease control measures such as pre-emptive culling or vaccination have been recommended based on the results from several simulation models; however, these models were parameterized for areas with high animal densities. The objective of this study was to explore whether pre-emptive culling and emergency vaccination should also be recommended in low- to moderate-density areas such as Switzerland. Additionally, we studied the influence of initial outbreak conditions on outbreak severity to improve the efficiency of disease prevention and surveillance. A spatial, stochastic, individual-animal-based simulation model using all registered Swiss pig premises in 2009 (n=9770) was implemented to quantify these relationships. The model simulates within-herd and between-herd transmission (direct and indirect contacts and local area spread). By varying the four parameters (a) control measures, (b) index herd type (breeding, fattening, weaning or mixed herd), (c) detection delay for secondary cases during an outbreak and (d) contact tracing probability, 112 distinct scenarios were simulated. To assess the impact of scenarios on outbreak severity, daily transmission rates were compared between scenarios. Compared with the baseline strategy (stamping out and movement restrictions) vaccination and pre-emptive culling neither reduced outbreak size nor duration. Outbreaks starting in a herd with weaning piglets or fattening pigs caused higher losses regarding to the number of culled premises and were longer lasting than those starting in the two other index herd types. Similarly, larger transmission rates were estimated for these index herd type outbreaks. A longer detection delay resulted in more culled premises and longer duration and better transmission tracing increased the number of short outbreaks. Based on the simulation results, baseline control strategies seem sufficient to control CSF in low-medium animal-dense areas. Early detection of outbreaks is crucial and risk-based surveillance should be focused on weaning piglet and fattening pig premises.