52 resultados para Unobtrusive
Resumo:
Self-report underpins our understanding of falls among people with Parkinson’s (PwP) as they largely happen unwitnessed at home. In this qualitative study, we used an ethnographic approach to investigate which in-home sensors, in which locations, could gather useful data about fall risk. Over six weeks, we observed five independently mobile PwP at high risk of falling, at home. We made field notes about falls (prior events and concerns) and recorded movement with video, Kinect, and wearable sensors. The three women and two men (aged 71 to 79 years) having moderate or severe Parkinson’s were dependent on others and highly sedentary. We most commonly noted balance protection, loss, and restoration during chair transfers, walks across open spaces and through gaps, turns, steps up and down, and tasks in standing (all evident walking between chair and stairs, e.g.). Our unobtrusive sensors were acceptable to participants: they could detect instability during everyday activity at home and potentially guide intervention. Monitoring the route between chair and stairs is likely to give information without invading the privacy of people at high risk of falling, with very limited mobility, who spend most of the day in their sitting rooms.
Resumo:
Parkinson’s disease (PD) is an increasing neurological disorder in an aging society. The motor and non-motor symptoms of PD advance with the disease progression and occur in varying frequency and duration. In order to affirm the full extent of a patient’s condition, repeated assessments are necessary to adjust medical prescription. In clinical studies, symptoms are assessed using the unified Parkinson’s disease rating scale (UPDRS). On one hand, the subjective rating using UPDRS relies on clinical expertise. On the other hand, it requires the physical presence of patients in clinics which implies high logistical costs. Another limitation of clinical assessment is that the observation in hospital may not accurately represent a patient’s situation at home. For such reasons, the practical frequency of tracking PD symptoms may under-represent the true time scale of PD fluctuations and may result in an overall inaccurate assessment. Current technologies for at-home PD treatment are based on data-driven approaches for which the interpretation and reproduction of results are problematic. The overall objective of this thesis is to develop and evaluate unobtrusive computer methods for enabling remote monitoring of patients with PD. It investigates first-principle data-driven model based novel signal and image processing techniques for extraction of clinically useful information from audio recordings of speech (in texts read aloud) and video recordings of gait and finger-tapping motor examinations. The aim is to map between PD symptoms severities estimated using novel computer methods and the clinical ratings based on UPDRS part-III (motor examination). A web-based test battery system consisting of self-assessment of symptoms and motor function tests was previously constructed for a touch screen mobile device. A comprehensive speech framework has been developed for this device to analyze text-dependent running speech by: (1) extracting novel signal features that are able to represent PD deficits in each individual component of the speech system, (2) mapping between clinical ratings and feature estimates of speech symptom severity, and (3) classifying between UPDRS part-III severity levels using speech features and statistical machine learning tools. A novel speech processing method called cepstral separation difference showed stronger ability to classify between speech symptom severities as compared to existing features of PD speech. In the case of finger tapping, the recorded videos of rapid finger tapping examination were processed using a novel computer-vision (CV) algorithm that extracts symptom information from video-based tapping signals using motion analysis of the index-finger which incorporates a face detection module for signal calibration. This algorithm was able to discriminate between UPDRS part III severity levels of finger tapping with high classification rates. Further analysis was performed on novel CV based gait features constructed using a standard human model to discriminate between a healthy gait and a Parkinsonian gait. The findings of this study suggest that the symptom severity levels in PD can be discriminated with high accuracies by involving a combination of first-principle (features) and data-driven (classification) approaches. The processing of audio and video recordings on one hand allows remote monitoring of speech, gait and finger-tapping examinations by the clinical staff. On the other hand, the first-principles approach eases the understanding of symptom estimates for clinicians. We have demonstrated that the selected features of speech, gait and finger tapping were able to discriminate between symptom severity levels, as well as, between healthy controls and PD patients with high classification rates. The findings support suitability of these methods to be used as decision support tools in the context of PD assessment.
Resumo:
The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.
Resumo:
During autumn 2003, several thousand European starlings (Sturnus vulgaris) began roosting on exposed I-beams in a newly constructed, decorative glass canopy that covered the passenger pick-up area at the terminal building for Cleveland Hopkins International Airport, Ohio. The use of lethal control or conventional dispersal techniques, such as pyrotechnics and fire hoses, were not feasible in the airport terminal area. The design and aesthetics of the structure precluded the use of netting and other exclusion materials. In January 2004, an attempt was made to disperse the birds using recorded predator and distress calls broadcast from speakers installed in the structure. This technique failed to disperse the birds. In February 2004, we developed a technique using compressed air to physically and audibly harass the birds. We used a trailer-mounted commercial air compressor producing 185 cubic feet per minute of air at 100 pounds per square inch pressure and a 20-foot long, 1-inch diameter PVC pipe attached to the outlet hose. One person slowly (< 5 mph) drove a pick-up truck through the airport terminal at dusk while the second person sat on a bench in the truck bed and directed the compressed air from the pipe into the canopy to harass starlings attempting to enter the roost site. After 5 consecutive nights of compressed-air harassment, virtually no starlings attempted to roost in the canopy. Once familiar with the physical effects of the compressed air, the birds dispersed at the sound of the air. Only occasional harassment at dusk was needed through the remainder of the winter to keep the canopy free of starlings. Similar harassment with the compressor was conducted successfully in autumn 2004 with the addition of a modified leaf blower, wooden clappers, and laser. In conclusion, we found compressed air to be a safe, unobtrusive, and effective method for dispersing starlings from an urban roost site. This technique would likely be applicable for other urban-roosting species such as crows, house sparrows, and blackbirds.
Resumo:
Background: An important issue concerning the worldwide fight against stigma is the evaluation of psychiatrists’ beliefs and attitudes toward schizophrenia and mental illness in general. However, there is as yet no consensus on this matter in the literature, and results vary according to the stigma dimension assessed and to the cultural background of the sample. The aim of this investigation was to search for profiles of stigmatizing beliefs related to schizophrenia in a national sample of psychiatrists in Brazil. Methods: A sample of 1414 psychiatrists were recruited from among those attending the 2009 Brazilian Congress of Psychiatry. A questionnaire was applied in face-to-face interviews. The questionnaire addressed four stigma dimensions, all in reference to individuals with schizophrenia: stereotypes, restrictions, perceived prejudice and social distance. Stigma item scores were included in latent profile analyses; the resulting profiles were entered into multinomial logistic regression models with sociodemographics, in order to identify significant correlates. Results: Three profiles were identified. The “no stigma” subjects (n = 337) characterized individuals with schizophrenia in a positive light, disagreed with restrictions, and displayed a low level of social distance. The “unobtrusive stigma” subjects (n = 471) were significantly younger and displayed the lowest level of social distance, although most of them agreed with involuntary admission and demonstrated a high level of perceived prejudice. The “great stigma” subjects (n = 606) negatively stereotyped individuals with schizophrenia, agreed with restrictions and scored the highest on the perceived prejudice and social distance dimensions. In comparison with the first two profiles, this last profile comprised a significantly larger number of individuals who were in frequent contact with a family member suffering from a psychiatric disorder, as well as comprising more individuals who had no such family member. Conclusions: Our study not only provides additional data related to an under-researched area but also reveals that psychiatrists are a heterogeneous group regarding stigma toward schizophrenia. The presence of different stigma profiles should be evaluated in further studies; this could enable anti-stigma initiatives to be specifically designed to effectively target the stigmatizing group.
Resumo:
The prehistoric cemetery of Barshalder is located along the main road on the boundary between Grötlingbo and Fide parishes, near the southern end of the island of Gotland in the Baltic Sea. The cemetery was used from c. AD 1-1100. The level of publication in Swedish archaeology of the first millennium AD is low compared to, for instance, the British and German examples. Gotland’s rich Iron Age cemeteries have long been intensively excavated, but few have received monographic treatment. This publication is intended to begin filling this gap and to raise the empirical level of the field. It also aims to make explicit and test the often somewhat intuitively conceived results of much previous research. The analyses deal mainly with the Migration (AD 375–540), Vendel (AD 520–790) and Late Viking (AD 1000–1150) Periods. The following lines of inquiry have been prioritised. 1. Landscape history, i.e. placing the cemetery in a landscape-historical context. (Vol. 1, section 2.2.6) 2. Migration Period typochronology, i.e. the study of change in the grave goods. (Vol. 2, chapter 2) 3. Social roles: gender, age and status. (Vol. 2, chapter 3) 4. Religious identity in the 11th century, i.e. the study of religious indicators in mortuary customs and grave goods, with particular emphasis on the relationship between Scandinavian paganism and Christianity.. (Vol. 2, chapter 4) Barshalder is found to have functioned as a central cemetery for the surrounding area, located on peripheral land far away from contemporary settlement, yet placed on a main road along the coast for maximum visibility and possibly near a harbour. Computer supported correspondence analysis and seriation are used to study the gender attributes among the grave goods and the chronology of the burials. New methodology is developed to distinguish gender-neutral attributes from transgressed gender attributes. Sub-gender grouping due to age and status is explored. An independent modern chronology system with rigorous type definitions is established for the Migration Period of Gotland. Recently published chronology systems for the Vendel and Viking Periods are critically reviewed, tested and modified to produce more solid models. Social stratification is studied through burial wealth with a quantitative method, and the results are tested through juxtaposition with several other data types. The Late Viking Period graves of the late 10th and 11th centuries are studied in relation to the contemporary Christian graves at the churchyards. They are found to be symbolically soft-spoken and unobtrusive, with all pagan attributes kept apart from the body in a space between the feet of the deceased and the end of the over-long inhumation trench. A small number of pagan reactionary graves with more forceful symbolism are however also identified. The distribution of different 11th century cemetery types across the island is used to interpret the period’s confessional geography, the scale of social organisation and the degree of allegiance to western and eastern Christianity. 11th century society on Gotland is found to have been characterised by religious tolerance, by an absence of central organisation and by slow piecemeal Christianisation.
Resumo:
The prehistoric cemetery of Barshalder is located along the main road on the boundary between Grötlingbo and Fide parishes, near the southern end of the island of Gotland in the Baltic Sea. The ceme-tery was used from c. AD 1-1100. The level of publication in Swedish archaeology of the first millennium AD is low compared to, for instance, the British and German examples. Gotland’s rich Iron Age cemeteries have long been intensively excavated, but few have received monographic treatment. This publication is intended to begin filling this gap and to raise the empirical level of the field. It also aims to make explicit and test the often somewhat intuitively conceived re-sults of much previous research. The analyses deal mainly with the Migration (AD 375–540), Vendel (AD 520–790) and Late Viking (AD 1000–1150) Periods. The following lines of inquiry have been prioritised. 1. Landscape history, i.e. placing the cemetery in a landscape-historical context. (Vol. 1, section 2.2.6) 2. Migration Period typochronology, i.e. the study of change in the grave goods. (Vol. 2, chapter 2) 3. Social roles: gender, age and status. (Vol. 2, chapter 3) 4. Religious identity in the 11th century, i.e. the study of religious indicators in mortuary cus-toms and grave goods, with particular emphasis on the relationship between Scandinavian paganism and Christianity. (Vol. 2, chapter 4) Barshalder is found to have functioned as a central cemetery for the surrounding area, located on pe-ripheral land far away from contemporary settle-ment, yet placed on a main road along the coast for maximum visibility and possibly near a harbour. Computer supported correspondence analysis and seriation are used to study the gender attributes among the grave goods and the chronology of the burials. New methodology is developed to distin-guish gender-neutral attributes from transgressed gender attributes. Sub-gender grouping due to age and status is explored. An independent modern chronology system with rigorous type definitions is established for the Migration Period of Gotland. Recently published chronology systems for the Vendel and Viking Periods are critically reviewed, tested and modified to produce more solid models. Social stratification is studied through burial wealth with a quantitative method, and the results are tested through juxtaposition with several other data types. The Late Viking Period graves of the late 10th and 11th centuries are studied in relation to the contemporary Christian graves at the churchyards. They are found to be symbolically soft-spoken and unobtrusive, with all pagan attributes kept apart from the body in a space between the feet of the deceased and the end of the over-long inhumation trench. A small number of pagan reactionary graves with more forceful symbolism are however also identified. The distribution of different 11th cen-tury cemetery types across the island is used to in-terpret the period’s confessional geography, the scale of social organisation and the degree of alle-giance to western and eastern Christianity. 11th century society on Gotland is found to have been characterised by religious tolerance, by an absence of central organisation and by slow piecemeal Christianisation.
Resumo:
Tracking activities during daily life and assessing movement parameters is essential for complementing the information gathered in confined environments such as clinical and physical activity laboratories for the assessment of mobility. Inertial measurement units (IMUs) are used as to monitor the motion of human movement for prolonged periods of time and without space limitations. The focus in this study was to provide a robust, low-cost and an unobtrusive solution for evaluating human motion using a single IMU. First part of the study focused on monitoring and classification of the daily life activities. A simple method that analyses the variations in signal was developed to distinguish two types of activity intervals: active and inactive. Neural classifier was used to classify active intervals; the angle with respect to gravity was used to classify inactive intervals. Second part of the study focused on extraction of gait parameters using a single inertial measurement unit (IMU) attached to the pelvis. Two complementary methods were proposed for gait parameters estimation. First method was a wavelet based method developed for the estimation of gait events. Second method was developed for estimating step and stride length during level walking using the estimations of the previous method. A special integration algorithm was extended to operate on each gait cycle using a specially designed Kalman filter. The developed methods were also applied on various scenarios. Activity monitoring method was used in a PRIN’07 project to assess the mobility levels of individuals living in a urban area. The same method was applied on volleyball players to analyze the fitness levels of them by monitoring their daily life activities. The methods proposed in these studies provided a simple, unobtrusive and low-cost solution for monitoring and assessing activities outside of controlled environments.
Resumo:
Autonomous system applications are typically limited by the power supply operational lifetime when battery replacement is difficult or costly. A trade-off between battery size and battery life is usually calculated to determine the device capability and lifespan. As a result, energy harvesting research has gained importance as society searches for alternative energy sources for power generation. For instance, energy harvesting has been a proven alternative for powering solar-based calculators and self-winding wristwatches. Thus, the use of energy harvesting technology can make it possible to assist or replace batteries for portable, wearable, or surgically-implantable autonomous systems. Applications such as cardiac pacemakers or electrical stimulation applications can benefit from this approach since the number of surgeries for battery replacement can be reduced or eliminated. Research on energy scavenging from body motion has been investigated to evaluate the feasibility of powering wearable or implantable systems. Energy from walking has been previously extracted using generators placed on shoes, backpacks, and knee braces while producing power levels ranging from milliwatts to watts. The research presented in this paper examines the available power from walking and running at several body locations. The ankle, knee, hip, chest, wrist, elbow, upper arm, side of the head, and back of the head were the chosen target localizations. Joints were preferred since they experience the most drastic acceleration changes. For this, a motor-driven treadmill test was performed on 11 healthy individuals at several walking (1-4 mph) and running (2-5 mph) speeds. The treadmill test provided the acceleration magnitudes from the listed body locations. Power can be estimated from the treadmill evaluation since it is proportional to the acceleration and frequency of occurrence. Available power output from walking was determined to be greater than 1mW/cm³ for most body locations while being over 10mW/cm³ at the foot and ankle locations. Available power from running was found to be almost 10 times higher than that from walking. Most energy harvester topologies use linear generator approaches that are well suited to fixed-frequency vibrations with sub-millimeter amplitude oscillations. In contrast, body motion is characterized with a wide frequency spectrum and larger amplitudes. A generator prototype based on self-winding wristwatches is deemed to be appropriate for harvesting body motion since it is not limited to operate at fixed-frequencies or restricted displacements. Electromagnetic generation is typically favored because of its slightly higher power output per unit volume. Then, a nonharmonic oscillating rotational energy scavenger prototype is proposed to harness body motion. The electromagnetic generator follows the approach from small wind turbine designs that overcome the lack of a gearbox by using a larger number of coil and magnets arrangements. The device presented here is composed of a rotor with multiple-pole permanent magnets having an eccentric weight and a stator composed of stacked planar coils. The rotor oscillations induce a voltage on the planar coil due to the eccentric mass unbalance produced by body motion. A meso-scale prototype device was then built and evaluated for energy generation. The meso-scale casing and rotor were constructed on PMMA with the help of a CNC mill machine. Commercially available discrete magnets were encased in a 25mm rotor. Commercial copper-coated polyimide film was employed to manufacture the planar coils using MEMS fabrication processes. Jewel bearings were used to finalize the arrangement. The prototypes were also tested at the listed body locations. A meso-scale generator with a 2-layer coil was capable to extract up to 234 µW of power at the ankle while walking at 3mph with a 2cm³ prototype for a power density of 117 µW/cm³. This dissertation presents the analysis of available power from walking and running at different speeds and the development of an unobtrusive miniature energy harvesting generator for body motion. Power generation indicates the possibility of powering devices by extracting energy from body motion.
Resumo:
Theoretical propositions stressing the importance of trust, reciprocity, and reputation for cooperation in social exchange relations are deeply rooted in classical sociological thought. Today’s online markets provide a unique opportunity to test these theories using unobtrusive data. Our study investigates the mechanisms promoting cooperation in an online-auction market where most transactions can be conceived as one-time-only exchanges. We first give a systematic account of the theoretical arguments explaining the process of cooperative transactions. Then, using a large dataset comprising 14,627 mobile phone auctions and 339,517 DVD auctions, we test key hypotheses about the effects of traders’ reputations on auction outcomes and traders’ motives for leaving feedback. Our statistical analyses show that sellers with better reputations have higher sales and obtain higher prices. Furthermore, we observe a high rate of participation in the feedback system, which is largely consistent with strong reciprocity—a predisposition to unconditionally reward (or punish) one’s interaction partner’s cooperation (or defection)—and altruism—a predisposition to increase one’s own utility by elevating an interaction partner’s utility. Our study demonstrates how strong reciprocity and altruism can mitigate the free-rider problem in the feedback system to create reputational incentives for mutually beneficial online trade.
Resumo:
Automatic analysis of minimally invasive surgical (MIS) video has the potential to drive new solutions that alleviate existing needs for safer surgeries: reproducible training programs, objective and transparent assessment systems and navigation tools to assist surgeons and improve patient safety. As an unobtrusive, always available source of information in the operating room (OR), this research proposes the use of surgical video for extracting useful information during surgical operations. Methodology proposed includes tools' tracking algorithm and 3D reconstruction of the surgical field. The motivation for these solutions is the augmentation of the laparoscopic view in order to provide orientation aids, optimal surgical path visualization, or preoperative virtual models overlay
Resumo:
Interacting with a computer system in the operating room (OR) can be a frustrating experience for a surgeon, who currently has to verbally delegate to an assistant every computer interaction task. This indirect mode of interaction is time consuming, error prone and can lead to poor usability of OR computer systems. This thesis describes the design and evaluation of a joystick-like device that allows direct surgeon control of the computer in the OR. The device was tested extensively in comparison to a mouse and delegated dictation with seven surgeons, eleven residents, and five graduate students. The device contains no electronic parts, is easy to use, is unobtrusive, has no physical connection to the computer and makes use of an existing tool in the OR. We performed a user study to determine its effectiveness in allowing a user to perform all the tasks they would be expected to perform on an OR computer system during a computer-assisted surgery. Dictation was found to be superior to the joystick in qualitative measures, but the joystick was preferred over dictation in user satisfaction responses. The mouse outperformed both joystick and dictation, but it is not a readily accepted modality in the OR.
Resumo:
De Ishtar discusses ways in which Whites could develop research epistemologies and methodologies which responded to and reflected those being developed by Indigenous researchers across Australia and around the world. She details her own explorations in developing a methodology which enabled her to work in collaboration with a group of Indigenous women elders from Western Australia's Great Sandy Desert. She stresses that if collaborative research with Indigenous women is to be possible, White feminists must learn how to do research which is culturally unobtrusive, and that means taking responsibility for their own cultural practices, attitudes and values.
Resumo:
Fiber Bragg gratings can be used for monitoring different parameters in a wide variety of materials and constructions. The interrogation of fiber Bragg gratings traditionally consists of an expensive and spacious peak tracking or spectrum analyzing unit which needs to be deployed outside the monitored structure. We present a dynamic low-cost interrogation system for fiber Bragg gratings which can be integrated with the fiber itself, limiting the fragile optical in- and outcoupling interfaces and providing a compact, unobtrusive driving and read-out unit. The reported system is based on an embedded Vertical Cavity Surface Emitting Laser (VCSEL) which is tuned dynamically at 1 kHz and an embedded photodiode. Fiber coupling is provided through a dedicated 45° micromirror yielding a 90° in-the-plane coupling and limiting the total thickness of the fiber coupled optoelectronic package to 550 µm. The red-shift of the VCSEL wavelength is providing a full reconstruction of the spectrum with a range of 2.5 nm. A few-mode fiber with fiber Bragg gratings at 850 nm is used to prove the feasibility of this low-cost and ultra-compact interrogation approach.
Resumo:
Fiber Bragg gratings can be used for monitoring different parameters in a wide variety of materials and constructions. The interrogation of fiber Bragg gratings traditionally consists of an expensive and spacious peak tracking or spectrum analyzing unit which needs to be deployed outside the monitored structure. We present a dynamic low-cost interrogation system for fiber Bragg gratings which can be integrated with the fiber itself, limiting the fragile optical in- and outcoupling interfaces and providing a compact, unobtrusive driving and read-out unit. The reported system is based on an embedded Vertical Cavity Surface Emitting Laser (VCSEL) which is tuned dynamically at 1 kHz and an embedded photodiode. Fiber coupling is provided through a dedicated 45° micromirror yielding a 90° in-the-plane coupling and limiting the total thickness of the fiber coupled optoelectronic package to 550 µm. The red-shift of the VCSEL wavelength is providing a full reconstruction of the spectrum with a range of 2.5 nm. A few-mode fiber with fiber Bragg gratings at 850 nm is used to prove the feasibility of this low-cost and ultra-compact interrogation approach.