859 resultados para Unconditioned fear
Resumo:
BACKGROUND: Fibromyalgia syndrome (FMS) is frequently associated with psychiatric conditions, particularly anxiety. Deficits in contingency learning during fear conditioning have been hypothesized to increase anxiety and, consequently, pain sensation in susceptible individuals. The goal of this study was to examine the relationship between contingency learning and pain experience in subjects with FMS and rheumatoid arthritis (RA). METHODS: Fourteen female FMS subjects, 14 age-matched female RA subjects and 14 age-matched female healthy controls (HCs) were included in a fear-conditioning experiment. The conditioned stimulus (CS) consisted of visual signs, the unconditioned stimulus (US) of thermal stimuli. CS- predicted low-temperature exposure (US), while CS+ was followed by low or high temperature. RESULTS: In the FMS group, only 50% of the subjects were aware of the US-CS contingency, whereas 86% of the RA subjects and all of the HCs were aware of the contingency. CS+ induced more anxiety than CS- in RA subjects and HCs. As expected, low-temperature exposure was experienced as less painful after CS- than after CS+ in these subjects. FMS subjects did not show such adaptive conditioning. The effects of the type of CS on heart rate changes were significant in the HCs and the aware FMS subjects, but not in the unaware FMS subjects. CONCLUSIONS: Contingency learning deficits represent a potentially promising and specific, but largely unstudied, psychopathological factor in FMS. Deficits in contingency learning may increase anxiety and, consequently, pain sensation. These findings have the potential to contribute to the development of novel therapeutic approaches for FMS.
Resumo:
Fear relevance, the potential of a stimulus to become quickly associated with fear, is a characteristic assumed to have an evolutionary basis and to result in preferential processing. Previous research has shown that fear relevant stimuli share a number of characteristics, negative valence and preferential identification in a visual search task, for instance. The present research examined whether these two characteristics can be acquired by non-fear relevant stimuli (geometric shapes) as a result of Pavlovian fear conditioning. Two experiments employed an aversive learning paradigm with geometric shape CSs and a shock US, with stimulus ratings, affective priming and visual search performance assessed before and after acquisition and after extinction. Differential electrodermal responses, larger during CS1 than CS, were present during acquisition but not during extinction. Affective priming results suggest that the CS1 acquired negative valence during acquisition, which was lost during extinction. However, negative valence as indexed by more negative ratings for CS1 than for CS shapes seemed to survive extinction. Preferential attentional processing as indexed by faster detection of CS1 among CS shapes than vice versa on the visual search task also remained. The current research confirmed that characteristics of fear relevant stimuli can be acquired in an aversive learning episode and that they may be extinguished. This supports the proposal that fear relevance may be malleable through learning.
Resumo:
Ohman and colleagues provided evidence for preferential processing of pictures depicting fear-relevant animals by showing that pictures of snakes and spiders are found faster among pictures of fiowers and mushrooms than vice versa and that the speed of detecting fear-relevant animals was not affected by set size whereas the speed of detecting fiowers/mushrooms was. Experiment 1 replicated this finding. Experiment 2, however, found similar search advantages when pictures of cats and horses or of wolves and big cats were to be found among pictures of flowers and mushrooms. Moreover, Experiment 3, in a within subject comparison, failed to find faster identification of snakes and spiders than of cats and horses among flowers and mushrooms. The present findings seem to indicate that previous reports of preferential processing of pictures of snakes and spiders in a visual search task may reflect a processing advantage for animal pictures in general rather than fear-relevance.
Resumo:
Fear-relevant stimuli, such as snakes, spiders and heights, preferentially capture attention as compared to nonfear-relevant stimuli. This is said to reflect an encapsulated mechanism whereby attention is captured by the simple perceptual features of stimuli that have evolutionary significance. Research, using pictures of snakes and spiders, has found some support for this account; however, participants may have had prior fear of snakes and spiders that influenced results. The current research compared responses of snake and spider experts who had little fear of snakes and spiders, and control participants across a series of affective priming and visual search tasks. Experts discriminated between dangerous and nondangerous snakes and spiders, and expert responses to pictures of nondangerous snakes and spiders differed from those of control participants. The current results dispute that stimulus fear relevance is based purely on perceptual features, and provides support for the role of learning and experience.
Resumo:
The effect of intraseptal injections of lidocaine before a first or a second session in the elevated plus-maze, in a test-retest paradigm, was investigated. In addition to gross session analyses, a minute-by-minute analysis of the sessions was used to evaluate both anxiety and memory. Lidocaine injections before the test session produced increases in the frequency of entries, time spent and distance run in the open arms without affecting activity occurring in the closed arms. During the retest session, saline- and lidocaine-treated rats exhibited increased indices of anxiety and lidocaine-treated rats exhibited decreased closed-arm entries. The minute-by-minute analysis showed a faster decrease in anxiety-related behaviors during the test session by saline- than by lidocaine-treated rats and a significant decrease in closed-arm exploration by saline-treated rats, but not by lidocaine-treated ones. Lidocaine injection before the retest session produced increases in the frequency of entries, time spent and distance run in the open arms in the second session when compared with saline-treated rats. Minute-by-minute analysis showed an increase in the time spent in the open arms by lidocaine animals at the beginning of the retest session in comparison to saline animals and a significant decrease in closed-arm exploration by both groups. These results suggest that inactivation of the medial septum by lidocaine affects the expression of unconditioned and conditioned forms of anxiety in the elevated plus-maze and, in a lesser way, the acquisition and retention of spatial information. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The involvement of dopamine (DA) mechanisms in the nucleus accumbens (NAC) in fear conditioning has been proposed by many studies that have challenged the view that the NAC is solely involved in the modulation of appetitive processes. However, the role of the core and shell subregions of the NAC in aversive conditioning remains unclear. The present study examined DA release in these NAC subregions using microdialysis during the expression of fear memory. Guide cannulae were implanted in rats in the NAC core and shell. Five days later, the animals received 10 footshocks (0.6 mA, 1 s duration) in a distinctive cage A (same context). On the next day, dialysis probes were inserted through the guide cannulae into the NAC core and shell subregions, and the animals were behaviorally tested for fear behavior either in the same context (cage A) or in a novel context (cage B). Dialysates were collected every 5 min for 90 min and analyzed by high-performance liquid chromatography. The rats exhibited a significant fear response in cage A but not in cage B. Moreover, increased DA levels in both NAC subregions were observed 5-25 min after the beginning of the test when the animals were tested in the same context compared with accumbal DA levels from rats tested in the different context. These findings Suggest that DA mechanisms in both the NAC core and shell may play an important role in the expression of contextual fear memory. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Independent brain circuits appear to underlie different forms of conditioned fear, depending on the type of conditioning used, such as a context or explicit cue paired with footshocks. Several clinical reports have associated damage to the medial temporal lobe (MTL) with retrograde amnesia. Although a number of studies have elucidated the neural circuits underlying conditioned fear, the involvement of MTL components in the aversive conditioning paradigm is still unclear. To address this issue, we assessed freezing responses and Fos protein expression in subregions of the rhinal cortex and ventral hippocampus of rats following exposure to a context, light or tone previously paired with footshock (Experiment 1). A comparable degree of freezing was observed in the three types of conditioned fear, but with distinct patterns of Fos distribution. The groups exposed to cued fear conditioning did not show changes in Fos expression, whereas the group subjected to contextual fear conditioning showed selective activation of the ectorhinal (Ect), perirhinal (Per), and entorhinal (Ent) cortices, with no changes in the ventral hippocampus. We then examined the effects of the benzodiazepine midazolam injected bilaterally into these three rhinal subregions in the expression of contextual fear conditioning (Experiment 2). Midazolam administration into the Ect, Per, and Ent reduced freezing responses. These findings suggest that contextual and explicit stimuli endowed with aversive properties through conditioning recruit distinct brain areas, and the rhinal cortex appears to be critical for storing context-, but not explicit cue-footshock, associations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Excitation of the mesocorticolimbic pathway, originating from dopaminergic neurons in the ventral tegmental area (VTA), may be important for the development of exaggerated fear responding. Among the forebrain regions innervated by this pathway, the amygdala is an essential component of the neural circuitry of conditioned fear. The functional role of the dopaminergic pathway connecting the VIA to the basolateral amygdala (BLA) in fear and anxiety has received little attention. In vivo microdialysis was performed to measure dopamine levels in the BLA of Wistar rats that received the dopamine D(2) agonist quinpirole (1 mu g/0.2 mu l) into the VTA and were subjected to a fear conditioning test using a light as the conditioned stimulus (CS). The effects of intra-BLA injections of the D(1) antagonist SCH 23390 (1 and 2 mu g/0.2 mu l) and D(2) antagonist sulpiride (1 and 2 mu g/0.2 mu l) on fear-potentiated startle (FPS) to a light-CS were also assessed. Locomotor performance was evaluated by use of open-field and rotarod tests. Freezing and increased dopamine levels in the BLA in response to the CS were both inhibited by intra-VTA quinpirole. Whereas intra-BLA SCH 23390 did not affect FPS, intra-BLA sulpiride (2 mu g) inhibited FPS. Sulpiride`s ability to decrease FPS cannot be attributed to nonspecific effects because this drug did not affect motor performance. These findings indicate that the dopamine D(2) receptor pathway connecting the ventral tegmental area and the basolateral amygdala modulates fear and anxiety and may be a novel pharmacological target for the treatment of anxiety. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Background: The spectrum approach was used to examine contributions of comorbid symptom dimensions of substance abuse and eating disorder to abnormal prefrontal-cortical and subcortical-striatal activity to happy and fear faces previously demonstrated in bipolar disorder (BD). Method: Fourteen remitted BD-type I and sixteen healthy individuals viewed neutral, mild and intense happy and fear faces in two event-related fMRI experiments. All individuals completed Substance-Use and Eating-Disorder Spectrum measures. Region-of-Interest analyses for bilateral prefrontal and subcortical-striatal regions were performed. Results: BD individuals scored significantly higher on these spectrum measures than healthy individuals (p<0.05), and were distinguished by activity in prefrontal and subcortical-striatal regions. BD relative to healthy individuals showed reduced dorsal prefrontal-cortical activity to all faces. Only BD individuals showed greater subcortical-striatal activity to happy and neutral faces. In BD individuals, negative correlations were shown between substance use severity and right PFC activity to intense happy faces (p<0.04), and between substance use severity and right caudate nucleus activity to neutral faces (p<0.03). Positive correlations were shown between eating disorder and right ventral putamen activity to intense happy (p<0.02) and neutral faces (p<0.03). Exploratory analyses revealed few significant relationships between illness variables and medication upon neural activity in BID individuals. Limitations: Small sample size of predominantly medicated BD individuals. Conclusion: This study is the first to report relationships between comorbid symptom dimensions of substance abuse and eating disorder and prefrontal-cortical and subcortical-striatal activity to facial expressions in BD. Our findings suggest that these comorbid features may contribute to observed patterns of functional abnormalities in neural systems underlying mood regulation in BD. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fear of heights, or acrophobia, is one of the most frequent subtypes of specific phobia frequently associated to depression and other anxiety disorders. Previous evidence suggests a correlation between acrophobia and abnormalities in balance control, particularly involving the use of visual information to keep postural stability. This study investigates the hypotheses that (1) abnormalities in balance control are more frequent in individuals with acrophobia even when not exposed to heights, that (2) acrophobic symptoms are associated to abnormalities in visual perception of movement; and that (3) individuals with acrophobia are more sensitive to balance-cognition interactions. Thirty-one individuals with specific phobia of heights and thirty one non-phobic controls were compared using dynamic posturography and a manual tracking task. Acrophobics had poorer performance in both tasks, especially when carried out simultaneously. Previously described interference between posture control and cognitive activity seems to play a major role in these individuals. The presence of physiologic abnormalities is compatible with the hypothesis of a non-associative acquisition of fear of heights, i.e., not associated to previous traumatic events or other learning experiences. Clinically, this preliminary study corroborates the hypothesis that vestibular physical therapy can be particularly useful in treating individuals with fear of heights.
Resumo:
The cellular prion protein (PrPC) is a neuronal anchored glycoprotein that has been associated with distinct functions in the CNS, such as cellular adhesion and differentiation, synaptic plasticity and cognition. Here we investigated the putative involvement of the PrPC in the innate fear-induced behavioural reactions in wild-type (WT), PrPC knockout (Prnp(0/0)) and the PrPC overexpressing Tg-20 mice evoked in a prey versus predator paradigm. The behavioural performance of these mouse strains in olfactory discrimination tasks was also investigated. When confronted with coral snakes, mice from both Prnp(0/0) and Tg-20 strains presented a significant decrease in frequency and duration of defensive attention and risk assessment, compared to WT mice. Tg-20 mice presented decreased frequency of escape responses, increased exploratory behaviour, and enhancement of interaction with the snake, suggesting a robust fearlessness caused by PrPC overexpression. Interestingly, there was also a discrete decrease in the attentional defensive response (decreased frequency of defensive alertness) in Prnp(0/0) mice in the presence of coral snakes. Moreover, Tg-20 mice presented an increased exploration of novel environment and odors. The present findings indicate that the PrPC overexpression causes hyperactivity, fearlessness, and increased preference for visual, tactile and olfactory stimuli-associated novelty, and that the PrPC deficiency might lead to attention deficits. These results suggest that PrPC exerts an important role in the modulation of innate fear and novelty-induced exploration. (C) 2008 Published by Elsevier B.V.