998 resultados para Ultrashort pulses laser Grating
Resumo:
The combination of the third-order optical nonlinearity with chromatic dispersion in optical fibers offers an extremely rich variety of possibilities for tailoring the temporal and spectral content of a light signal, depending on the regime of dispersion that is used. Here, we review recent progress on the use of third-order nonlinear processes in optical fibers for pulse shaping in the temporal and spectral domains. Various examples of practical significance will be discussed, spanning fields from the generation of specialized temporal waveforms to the generation of ultrashort pulses, and to stable continuum generation.
Resumo:
The theoretical model and underlying physics described in this thesis are about the interaction of femtosecond-laser and XUV pulses with solids. The key to understand the basics of such interaction is to study the structural response of the materials after laser interaction. Depending on the laser characteristics, laser-solid interaction can result in a wide range of structural responses such as solid-solid phase transitions, vacuum phonon squeezing, ultrafast melting, generation of coherent phonons, etc. During my research work, I have modeled the systems irradiated by low-, medium- and high-laser intensities, and studied different types of structural dynamics of solids at various laser fluences.
Resumo:
We report on the generation of tunable light around 400 nm by frequency-doubling ultrashort laser pulses whose spectral phase is modulated by a sum of sinusoidal functions. The linewidth of the ultraviolet band produced is narrower than 1 nm, in contrast to the 12 nm linewidth of the non-modulated incident spectrum. The influence of pixellation of the liquid crystal spatial light modulator on the efficiency of the phase-modulated second harmonic generation is discussed.
Resumo:
We demonstrate a simple self-referenced single-shot method for simultaneously measuring two different arbitrary pulses, which can potentially be complex and also have very different wavelengths. The method is a variation of cross-correlation frequency-resolved optical gating (XFROG) that we call double-blind (DB) FROG. It involves measuring two spectrograms, both of which are obtained simultaneously in a single apparatus. DB FROG retrieves both pulses robustly by using the standard XFROG algorithm, implemented alternately on each of the traces, taking one pulse to be ?known? and solving for the other. We show both numerically and experimentally that DB FROG using a polarization-gating beam geometry works reliably and appears to have no nontrivial ambiguities.
Resumo:
This thesis presents a detailed, experiment-based study of generation of ultrashort optical pulses from diode lasers. Simple and cost-effective techniques were used to generate high power, high quality optical short pulses at various wavelength windows. The major achievements presented in the thesis is summarised as follows. High power pulses generation is one of the major topics discussed in the thesis. Although gain switching is the simplest way for ultrashort pulse generation, it proves to be quite effective to deliver high energy pulses on condition that the pumping pulses with extremely fast rising time and high enough amplitude are applied on specially designed pulse generators. In the experiment on a grating-coupled surface emitting laser (GCSEL), peak power as high as 1W was achieved even when its spectral bandwidth was controlled within 0.2nm. Another experiment shows violet picosecond pulses with peak power as high as 7W was achieved when the intensive electrical pulses were applied on optimised DC bias to pump on InGaN violet diode laser. The physical mechanism of this phenomenon, as we considered, may attributed to the self-organised quantum dots structure in the laser. Control of pulse quality, including spectral quality and temporal profile, is an important issue for high power pulse generation. The ways to control pulse quality described in the thesis are also based on simple and effective techniques. For instance, GCSEL used in our experiment has a specially designed air-grating structure for out-coupling of optical signals; hence, a tiny flat aluminium mirror was placed closed to the grating section and resulted in a wavelength tuning range over 100nm and the best side band suppression ratio of 40dB. Self-seeding, as an effective technique for spectral control of pulsed lasers, was demonstrated for the first time in a violet diode laser. In addition, control of temporal profile of the pulse is demonstrated in an overdriven DFB laser. Wavelength tuneable fibre Bragg gratings were used to tailor the huge energy tail of the high power pulse. The whole system was compact and robust. The ultimate purpose of our study is to design a new family of compact ultrafast diode lasers. Some practical ideas of laser design based on gain-switched and Q-switched devices are also provided in the end.
Resumo:
As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets,high amplitude EM pulses propagate away from the interaction point and are transported along anystalks and wires attached to the target. The propagation of these high amplitude pulses along a thinwire connected to a laser irradiated target was diagnosed via the proton radiography technique,measuring a pulse duration of 20 ps and a pulse velocity close to the speed of light. The strongelectric field associated with the EM pulse can be exploited for controlling dynamically the protonbeams produced from a laser-driven source. Chromatic divergence control of broadband laser drivenprotons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supportingwire around the proton beam axis to create a helical coil structure. In addition to providingfocussing and energy selection, the technique has the potential to post-accelerate the transiting protonsby the longitudinal component of the curved electric field lines produced by the helical coil lens.
Resumo:
The performance of a device based on modified injection-locking techniques is studied by means of numerical simulations. The device incorporates master and slave configurations, each one with a DFB laser and an electroabsortion modulator (EAM). This arrangement allows the generation of high peak power, narrow optical pulses according to a periodic or pseudorandom bit stream provided by a current signal generator. The device is able to considerably increase the modulation bandwidth of free-running gain-switched semiconductor lasers using multiplexing in the time domain. Opportunities for integration in small packages or single chips are discussed.
Resumo:
We report on the ion acceleration mechanisms that occur during the interaction of an intense and ultrashort laser pulse ( λ > μ I 2 1018 W cm−2 m2) with an underdense helium plasma produced from an ionized gas jet target. In this unexplored regime, where the laser pulse duration is comparable to the inverse of the electron plasma frequency ωpe, reproducible non-thermal ion bunches have been measured in the radial direction. The two He ion charge states present energy distributions with cutoff energies between 150 and 200 keV, and a striking energy gap around 50 keV appearing consistently for all the shots in a given density range. Fully electromagnetic particle-in-cell simulations explain the experimental behaviors. The acceleration results from a combination of target normal sheath acceleration and Coulomb explosion of a filament formed around the laser pulse propagation axis
Resumo:
The authors describe the operation of an actively modelocked Er fibre laser incorporating a chrped in fibre Bragg reflection grating as one end mirror to the cavity, acting as a lumped highly dispersive element. In one oreientation the grating shifted the cavity into normal dispersion regime and pulses of -25ps duration were produced. In the opposite oreintation, the cavity dispersion was anomalous and ~8ps pulses were produced with characterisitics typical of solitons propagating in a periodically perturbed system.
Resumo:
We report on the demonstration of an all-fiber femtosecond erbium doped fiber laser passively mode-locked using a 45º tilted fiber grating as an in-fiber polarizer in the laser cavity. The laser generates 600 fs pulses with output pulse energies ~1 nJ. Since the 45° tilted grating has a broad polarization response, the laser output has shown a tunabilty in wavelength from 1548 nm to 1562 nm by simply adjusting the polarization controllers in the cavity.
Resumo:
A nonlinear polarization rotation based all-fiber passively mode-locked Tm3+-doped fiber laser is demonstrated by using a 45° tilted fiber grating (TFG) as an in-line polarizer. Stable soliton pulses centered at 1992.7 nm with 2.02 nm FWHM bandwidth were produced at a repetition rate of 1.902 MHz with pulse duration of 2.2 ps and pulse energy of 74.6 pJ. With the increased pump power, the laser also can operate at noise-like regime with 18.1 nm FWHM bandwidth and pulse energy of up to 250.1 nJ. Using the same 45° TFG, both stable soliton and noise-like mode-locking centered at ∼1970 nm and ∼2050 nm, were also achieved by shortening and extending the length of Tm3+-doped fiber, respectively, exhibiting advantages of broadband and low insertion loss at 2 μm band.
Resumo:
Widely tunable gain switching of a grating-coupled surface-emitting laser (GCSEL) has been demonstrated in a simple external cavity configuration for the first time. Pulse duration in range of 40-100ps and wavelength tuning over 100nm have been achieved. High power, tail-free optical pulses have been observed at 980nm.
Resumo:
An all-fiber normal-dispersion Yb-doped fiber laser with 45- tilted fiber grating (TFG) isto the best of our knowledgeexperimentally demonstrated for the first time. Stable linearly-chirped pulses with the duration of 4 ps and the bandwidth of 9 nm can be directly generated from the laser cavity. By employing the 45 TFG with the polarization-dependent loss of 33 dBoutput pulses with high polarization extinction ratio of 26 dB are implemented in the experiment. Our result shows that the 45 TFG can work effectively as a polarizerwhich could be exploited to singlepolarization all-fiber lasers.
Resumo:
The authors describe the operation of an actively modelocked Er fibre laser incorporating a chrped in fibre Bragg reflection grating as one end mirror to the cavity, acting as a lumped highly dispersive element. In one oreientation the grating shifted the cavity into normal dispersion regime and pulses of -25ps duration were produced. In the opposite oreintation, the cavity dispersion was anomalous and ~8ps pulses were produced with characterisitics typical of solitons propagating in a periodically perturbed system.
Resumo:
An all-fiber normal-dispersion Yb-doped fiber laser with 45- tilted fiber grating (TFG) isto the best of our knowledgeexperimentally demonstrated for the first time. Stable linearly-chirped pulses with the duration of 4 ps and the bandwidth of 9 nm can be directly generated from the laser cavity. By employing the 45 TFG with the polarization-dependent loss of 33 dBoutput pulses with high polarization extinction ratio of 26 dB are implemented in the experiment. Our result shows that the 45 TFG can work effectively as a polarizerwhich could be exploited to singlepolarization all-fiber lasers.