993 resultados para Ultrafine-Grained


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the work is development of industry guidance concerning production of ultrafine-grained (UFG) High Strength Low Alloy (HSLA) steels using strain-induced dynamic phase transformations during advanced thermomechanical processing. In the first part of the work, the effect of processing parameters on the grain refinement was studied. Based on the obtained results, a multiscale computer model was developed in the second part of the work that was subsequently used to predict the mechanical response of studied structures. As an overall outcome, a process window was established for the production of UFG steels that can be adopted in existing hot rolling mills. © 2014 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An equiaxed ultrafine-grained (UFG) microstructure was successfully produced in a Ti-6Al-4V alloy with an average grain size of 110-230. nm through symmetric and asymmetric warm rolling of a martensitic starting microstructure. The UFG material displayed a combination of ultrahigh strength and ductility at room temperature. Compared with the conventional symmetric rolling, the asymmetric rolling process led to a more pronounced effect of microstructure refinement and a higher tensile ductility. The optimum mechanical response was obtained though the asymmetric rolling at 70% reduction, offering an ultimate tensile strength of 1365. MPa and a total elongation of ~23%. Apart from the magnitude of grain refinement, the inclination of basal texture component from the normal towards the rolling direction during asymmetric rolling and possible strain induced β to martensite transformation may concurrently contribute to a remarkable tensile strength-ductility balance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper quantifies the effects of milling conditions on surface integrity of ultrafine-grained steels. Cutting speed, feed rate and depth of cut were related to microhardness and microstructure of the workpiece beneath machined surface. Low-carbon alloyed steel with 10.8 µm (as-received) and 1.7 µm (ultrafine) grain sizes were end milled using the down-milling and dry condition in a CNC machining center. The results show ultrafine-grained workpiece preserves its surface integrity against cutting parameters more than the as-received material. Cutting speed increases the microhardness while depth of cut deepens the hardened layer of the as-received material. Also, deformations of microstructure following feed rate direction were observed in workpiece subsurface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is part of a general effort to demonstrate the effect of the bulk microstructure of titanium as a model bone implant material on viability of osteoblasts (bone-forming cells). The objective of this work was to study the proliferation of preosteoblastic MC3T3-E1 cells extracted from mice embryos on commercial purity titanium substrates. Two distinct states of titanium were considered: as-received material with an average grain size of 4.5 microm and that processed by equal channel angular pressing (ECAP), with an average grain size of 200 nm. We report the first results of an in vitro study into the effect of this extreme grain refinement on viability and proliferation of MC3T3-E1 cells. By means of MTT assays it was demonstrated that ECAP processing of titanium enhances MC3T3-E1 culture proliferation in a spectacular way. This finding suggests that bone implants made from ECAP processed titanium may promote bone tissue growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commercial purity titanium with an average grain size in the low sub-micron range was produced by equal channel angular pressing (ECAP). Attachment of human bone marrow-derived mesenchymal stem cells (hMSCs) to the surface of conventional coarse grained and ECAP-modified titanium was studied. It was demonstrated that the attachment and spreading of hMSCs in the initial stages (up to 24h) of culture was enhanced by grain refinement. Surface characterization by a range of techniques showed that the main factor responsible for the observed acceleration of hMSC attachment and spreading on titanium due to grain refinement in the bulk is the attendant changes in surface topography on the nanoscale. These results indicate that, in addition to its superior mechanical properties, ECAP-modified titanium possesses improved biocompatibility, which makes it to a potent candidate for applications in medical implants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples of oxygen-free high conductivity (OFHC) coarse-grained (CG) and ultrafine-grained (UFG) copper were micro-extruded to an equivalent strain of 2.8 in one pass at room temperature. Samples of the OFHC copper were annealed at 650C for 2 h to produce CG copper. Some samples were subsequently processed by equal channel angular pressing of eight passes, route Bc, at room temperature to produce the UFG material. Crystallographic texture and misorientation distributions were obtained locally from EBSD mappings at different radial positions after micro-extrusion. To model the strain path during micro-extrusion, the analytic flow line model of Altan etal. [J Mater. Process. Tech. 33 (1992) p.263] was used and also validated by finite element calculations. Modelling was carried out using the viscoplastic self-consistent (VPSC) model and a recently developed grain refinement model. The results showed large texture variations along the cross-section of the extruded sample for both UFG and CG copper. These cyclic drawing textures in UFG copper were simulated in good agreement with experiments using the presented modelling framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of small-angle X-ray scattering and high-precision density measurements showed that the application of counterpressure during the equal-channel angular pressing (ECAP) of ultrafine-grained copper leads to a decrease in nanoporosity and an increase in mechanical properties of the ECAP-processed metal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure, fatigue crack growth behaviour and hardness of ultra fine grained 6061 aluminium alloy obtained by equal angle channel processing was studied. ECAP resulted in significant grain refinement down to the sub micron level and corresponding increase in hardness. Results point to a similar fatigue threshold stress intensity range and fatigue crack growth rates for 1, 2, 4 and 6 passes of ECAP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the ultrafine crystallinity of commercial purity grade 2 (as-received) titanium and titanium modified by equal channel angular pressing (modified titanium) on bacterial attachment was studied. A topographic profile analysis of the surface of the modified titanium revealed a complex morphology of the surface. Its prominent micro- and nano-scale features were 100-200-nm-scale undulations with 10-15 microm spacing. The undulating surfaces were nano-smooth, with height variations not exceeding 5-10 nm. These surface topography characteristics were distinctly different from those of the as-received samples, where broad valleys (up to 40-60 microm) were detected, whose inner surfaces exhibited asperities approximately 100 nm in height spaced at 1-2 microm. It was found that each of the three bacteria strains used in this study as adsorbates, viz. Staphylococcus aureus CIP 68.5, Pseudomonas aeruginosa ATCC 9025 and Escherichia coli K12, responded differently to the two types of titanium surfaces. Extreme grain refinement by ECAP resulted in substantially increased numbers of cells attached to the surface compared to as-received titanium. This enhanced degree of attachment was accompanied with an increased level of extracellular polymeric substances (EPS) production by the bacteria.