985 resultados para UV degradation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is the first study to investigate the associations between sun exposure and folate degradation in a group of childbearing age women in a high UV environment. It examined whether the degree of sun exposure experienced by women influenced blood folate levels following a period of folic acid supplementation and found a strong significant relationship between increased sun exposure and folate degradation. This relationship has strong implications for public health and the thesis has provided a foundation for further research in this area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in the molecular structure of polymer antioxidants such as hindered amine light stabilisers (HALS) is central to their efficacy in retarding polymer degradation and therefore requires careful monitoring during their in-service lifetime. The HALS, bis-(1-octyloxy-2,2,6,6-tetramethyl-4-piperidinyl) sebacate (TIN123) and bis-(1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate (TIN292), were formulated in different polymer systems and then exposed to various curing and ageing treatments to simulate in-service use. Samples of these coatings were then analysed directly using liquid extraction surface analysis (LESA) coupled with a triple quadrupole mass spectrometer. Analysis of TIN123 formulated in a cross-linked polyester revealed that the polymer matrix protected TIN123 from undergoing extensive thermal degradation that would normally occur at 292 degrees C, specifically, changes at the 1- and 4-positions of the piperidine groups. The effect of thermal versus photo-oxidative degradation was also compared for TIN292 formulated in polyacrylate films by monitoring the in situ conversion of N-CH3 substituted piperidines to N-H. The analysis confirmed that UV light was required for the conversion of N-CH3 moieties to N-H - a major pathway in the antioxidant protection of polymers - whereas this conversion was not observed with thermal degradation. The use of tandem mass spectrometric techniques, including precursor-ion scanning, is shown to be highly sensitive and specific for detecting molecular-level changes in HALS compounds and, when coupled with LESA, able to monitor these changes in situ with speed and reproducibility. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anatase TiO2 nanocrystals were painted on H-titanate nanofibers by using an aqueous solution of titanyl sulfate. The anatase nanocrystals were bonded solidly onto the titanate fibers through formation of coherent interfaces at which the oxygen atoms were shared by the nanocrystals and the fiber. This approach allowed us to create large anatase surfaces on the nanofibers, which are active in photocatalytic reactions. This method was also applied successfully to coat anatase nanocrystals on surfaces of fly ash and layered clay. The painted nanofibers exhibited a much higher catalytic activity for the photocatalytic degradation of sulforhodamine B and the selective oxidation of benzylamine to the corresponding imine (with a product selectivity >99%) under UV irradiation than both the parent H-titanate nanofibers and a commercial TiO2 powder, P25. We found that gold nanoparticles supported on H-titanate nanofibers showed no catalytic activity for the reduction of nitrobenzene to azoxybenzene, whereas the gold nanoparticles supported on the painted nanofibers and P25 could efficiently reduce nitrobenzene to azoxybenzene as the sole product under visible light irradiation. These results were different from those from the reduction on the gold nanoparticles photocatalyst on ZrO2, in which the azoxybenzene was the intermediate and converted to azobenzene quickly. Evidently, the support materials significantly affect the product selectivity of the nitrobenzene reduction. Finally, the new photocatalysts could be easily dispersed into and separated from a liquid because of their fibril morphology, which is an important advantage for practical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA) and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) mixtures were studied by the Fenton oxidation process. Central composite design and multi-response surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was < 0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass%, pH 5.39, 35.98 °C) were 77% and 57% respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/Vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose, and coprecipitated with lepidocrocite, an iron oxyhydroxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A profluorescent nitroxide possessing an isoindoline nitroxide moiety linked to a perylene fluorophore was developed to monitor radical mediated degradation of melamine-formaldehyde crosslinked polyester coil coatings in an industry standard accelerated weathering tester. Trapping of polyester-derived radicals (most likely C-radicals) that are generated during polymer degradation leads to fluorescent closed-shell alkoxy amines, which was used to obtain time-dependent degradation profiles to assess the relative stability of different polyesters towards weathering. The nitroxide probe couples excellent thermal stability and satisfactory photostability with high sensitivity and enables detection of free radical damage in polyesters under conditions that mimic exposure to the environment on a time scale of hours rather than months or years required by other testing methods. There are indications that the profluorescent nitroxide undergoes partial photo-degradation in the absence of polymer-derived radicals. Unexpectedly, it was also found that UV-induced fragmentation of the NO–C bond in closed-shell alkoxy amines leads to regeneration of the profluorescent nitroxide and the respective C-radical. The maximum fluorescence intensity that could be achieved with a given probe concentration is therefore not only determined by the amount of polyester radicals formed during accelerated weathering, but also by the light-driven side reactions of the profluorescent nitroxide and the corresponding alkoxy amine radical trapping products. Studies to determine the optimum probe concentration in the polymer matrix revealed that aggregation and re-absorption effects lowered the fluorescence intensity at higher concentrations of the profluorescent nitroxide, but too low probe concentrations, where these effects would be avoided, were not sufficient to trap the amount of polyester radicals formed upon weathering. The optimized experimental conditions were used to assess the impact of temperature and UV irradiance on polymer degradation during accelerated weathering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An unusual copper(II) complex [Cu(L-1a)(2)Cl-2] CH3OH center dot H2O center dot H3O+Cl- (1a) was isolated from a solution of a novel tricopper(II) complex [Cu-3(HL1)Cl-2]Cl-3 center dot 2H(2)O (1) in methanol. where L-1a is 3-(2-pyridyl)triazolo [1,5-a]-pyridine, and characterized with single crystal X-ray diffraction study. The tricopper(II) complex of potential ligand 1,5-bis(di-2-pyridyl ketone) carbohydrazone (H2L1) was synthesized and physicochemically characterized, while the formation of the complex la was followed by time-dependant monitoring of the UV-visible spectra. which reveals degradation of ligand backbone as intensity loss of bands corresponding to O -> Cu(II) charge transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fe-substituted CeVO4 was synthesized by the solution combustion technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis spectroscopy, transmission electron microscopy and BET surface area analyzer. These compounds crystallized in tetragonal zircon structure with Fe substituted in ionic state for Ce3+ ions. The degradation of anionic and cationic dyes was studied over Fe-substituted CeVO4 compounds. The compounds showed high photocatalytic activity towards dye degradation. The effect of amount of substitution was studied by varying the Fe substitution from 1 to 10%. The rates decreased with increasing substitution of Fe in CeVO4 and 1% Fe substituted CeVO4 showed the highest photocatalytic activity. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1,6-hexanediol diacrylate (HDDA) and methyl methacrylate (MMA) were copolymerized in different weight ratios using UV light induced photo-polymerization to give poly(HDDA-co-MMA). Differential scanning calorimetry shows that copolymer was formed. The thermogravimetric and differential scanning calorimetric studies with different heating rates were carried out on these copolymers to understand the nature of degradation and to determine its kinetics. Different kinetic models were adopted to evaluate various parameters like the activation energy, the order, and the frequency factor. These analyses are important to study the binder removal from 3D-shaped ceramic objects made by techniques like Solid free form fabrication. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 117: 2444-2453, 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Base metal (Cr, Mn, Fe, Ni, Cu) substituted CeVO4 compounds were synthesized by the solution combustion technique. These compounds were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis spectroscopy, transmission electron microscopy and BET surface area analyzer. The characterization indicated that the base metals were substituted in the ionic state in all the compounds. These compounds were used for the photocatalytic degradation of phenol and the degradation rates obtained in the presence of these compounds werecompared against that obtained with the commercial Degussa P-25 TiO2 catalyst. Fe and Cr substituted CeVO4 showed photocatalytic activity that was comparable with that of Degussa P-25 TiO2. The concentration of toxic intermediates was high when the reaction was carried out in presence of Degussa P-25 TiO2 but it was found to be insignificant when the reaction was carried out in presence of base metal-substituted CeVO4. The effect of % Fe-substitution (varied from 1 to 5 at%) in CeVO4 on the photocatalytic activity was also investigated and it was observed that 1 at% Fe-substituted compound showed the highest activity. A mathematical model describing the kinetics of the photocatalytic degradation of phenol was developed on the basis of the catalyst structure and taking into account the formation of all the possible intermediates. The variation of the concentration of phenol and the intermediates was described by the model and the reaction rateconstants were determined. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photocatalytic degradation of nitrobenzene and substituted nitrobenzenes under UV exposure was investigated with combustion synthesized nano-TiO2 and commercial TiO2 catalyst, Degussa P-25. The experimental data indicated that the photodegradation kinetics was first order. The photocatalytic degradation rates were considerably higher when catalyzed with combustion synthesized TiO2 compared to that of Degussa P-25. The degradation rate coefficients followed the order: 1-chloro,14-dinitrobenzene similar or equal to 4-nitrophenot > 2-nitrophenol > 1-chloro.4-nitrobenzene > 3-niti-ophenol > 2,4-dinitrophenol > 1-chloro,2-nitrobenzene > nitrobenzene > 1,3-dinitrobenzene. Plausible mechanisms and reasons for the observation of the above order are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechano-chemical degradation of poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA) and poly(n-butyl methacrylate) (PBMA) using ultrasound (US), ultraviolet (UV) radiation and a photoinitiator (benzoin) has been investigated. The degradation of the polymers was monitored using the reduction in number average molecular weight (M-n) and polydispersity (PDI). A degradation mechanism that included the decomposition of the initiator, generation of polymer radicals by the hydrogen abstraction of initiator radicals, reversible chain transfer between stable polymer and polymer radicals was proposed. The mechanism assumed mid-point chain scission due to US and random scission due to UV radiation. A series of experiments with different initial M-n of the polymers were performed and the results indicated that, irrespective of the initial PDI, the PDI during the sono-photooxidative degradation evolved to a steady state value of 1.6 +/- 0.05 for all the polymers. This steady state evolution of PDI was successfully predicted by the continuous distribution kinetics model. The rate coefficients of polymer scission due to US and UV exhibited a linear increase and decrease with the size of the alkyl group of the poly(alkyl methacrylate)s, respectively. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymers containing group VIA derived weak links, viz. poly(styrene disulfide) (PSD), poly- (styrene tetrasulfide) (PST), and poly(styrene diselenide) (PSDSE), have been synthesized. The polymers PSD and PST were characterized by NMR, IR, UV, TGA, and fast atom bombardment m w spectrometric (FABMS) techniques. The presence of different configurational sequences in PSD and PST were identified by *3C NMR spectroscopy. PSDSE, being insoluble in common organic solvents, was characterized using solid-state lac NMR (CP-MAS) spectroscopy. Thermal degradation of polymers under direct pyrolysis-mass spectrometric (DP-MS) conditions revealed that all the polymers undergo degradation through the weaklink scission. A comparative study of the pyrolysis products of these polymers with that of poly(styrene peroxide) (PSP) revealed a smooth transformation down the group with no monomer (styrene or oxygen) formation in PSP to only styrene and selenium metal in PSDSE. This trend of group VIA is explained from the energetics of the C-X bond (X = 0, S, and Se) which also seems to be important in addition to the weak X-X bond cleavage. In PSP and PSD, the behavior is also explained from the energetics of the alkoxy and thiyl radicals. The unique exothermic degradation in PSP compared to endothermic degradation in PSD and PSDSE is explained from the nature of the producta of degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Degradation of dimethoate under UV irradiation using TiO2/polymer films prepared by the layer-by-layer (LbL) method was investigated. The thin films were fabricated on glass slides and the surface morphology and roughness of the thin films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effect of lamp intensity, catalyst loading in the layers, number of bilayers, pH and initial dimethoate concentration on the degradation of dimethoate was systematically studied. The degradation was monitored using high performance liquid chromatography (HPLC) analysis and total organic carbon (TOC) measurements as a function of irradiation time, to see the change in concentration of dimethoate and mineralization, respectively. Complete degradation of dimethoate was achieved under TiO2 optimum loading of 4 g/L at an UV irradiation time of 180 min. Increase in the lamp intensity, catalyst loading and number of bilayers increased the rate of degradation. At a pH of 4.62, complete degradation of dimethoate was observed. The degradation efficiency decreased with increase in initial dimethoate concentration. The degradation byproducts were analyzed and confirmed by gas chromatography-mass spectra (GC-MS). Toxicity of the irradiated samples was measured using the luminescence of bacteria Vibrio fischeri after 30 min of incubation and the results showed more toxicity than the parent compound. Catalyst reusability studies revealed that the fabricated thin films could be repeatedly used for up to ten times without affecting the photocatalytic activity of the films. The findings of the present study are very useful for the treatment of wastewaters contaminated with pesticides. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition metal oxide (TiO2, Pe(2)O(3), CoO) loaded MCM-41 and MCM-48 were synthesized by a two-step surfactant-based process. Nanoporous, high surface area compounds were obtained after calcination of the compounds. The catalysts were characterized by SEM, XRD, XPS, UV-vis and BET surface area analysis. The catalysts showed high activity for the photocatalytic degradation of both anionic and cationic dyes. The degradation of the dyes was described using Langmuir-Hinshelwood kinetics and the associated rate parameters were determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition metal oxide (TiO2, Pe(2)O(3), CoO) loaded MCM-41 and MCM-48 were synthesized by a two-step surfactant-based process. Nanoporous, high surface area compounds were obtained after calcination of the compounds. The catalysts were characterized by SEM, XRD, XPS, UV-vis and BET surface area analysis. The catalysts showed high activity for the photocatalytic degradation of both anionic and cationic dyes. The degradation of the dyes was described using Langmuir-Hinshelwood kinetics and the associated rate parameters were determined.