994 resultados para URETHANE-ANESTHETIZED RATS
Resumo:
The aim of the present study was to analyse the haemodynamic effects induced by the hypothalamic disconnection (HD) caudal or rostral to the paraventricular nucleus of the hypothalamus (PVN). Mean arterial pressure (MAP), hindlimb, renal and mesenteric blood flow and vascular conductance (HVC, RVC and MVC, respectively) were measured in urethane (1.2 g/kg, i.v.) anesthetized rats for 60 min after disconnection. HD caudal to the PVN was performed with a double-edged microknife of bayonet shape (R=1 mm, H=2 mm) stereotaxically placed, lowered 2.8 mm caudal to the bregma along the midline. The cut was achieved by rotating the microknife 90° right and 90° left. HD rostral to the PVN was performed with the knife placed 0.8 mm caudal to the bregma. Thirty minutes after the hypothalamic disconnection caudal (HD-C), a decrease in MAP was observed (-14±3 mm Hg), reaching a 60-min decrease of 30±3 mm Hg. Hindlimb conductance increased 10 min after HD (156±14%) and remained elevated throughout the experimental period. On the contrary, we observed a transitory renal vasoconstriction (82±9%, ≤20 min) and a late mesenteric vasodilation, starting at 30 min (108±4%) and reaching 138±6% at 60 min. In rats with HD rostral to the PVN, we only observed minor changes in the cardiovascular parameters. In the MAP, there was a slight decrease 60 min after the hypothalamic disconnection rostral (HD-R) (-9±4 mm Hg). There were no significant changes in HVC. RVC and MVC were increased 60 min after the HD-R (116±12% and 124±11%, respectively). These results suggest that vasodilation in the hindlimb and in the mesenteric bed could contribute to the observed decrease in MAP in HD caudal to PVN rats. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Adenosine is the first drug of choice in the treatment of supraventricular arrhythmias. While the effects of adenosine on sympathetic nerve activity (SNA) have been investigated, no information is available on the effects on cardiac vagal nerve activity (VNA). We assessed in rats the responses of cardiac VNA, SNA and cardiovascular variables to intravenous bolus administration of adenosine. In 34 urethane-anaesthetized rats, cardiac VNA or cervical preganglionic sympathetic fibres were recorded together with ECG, arterial pressure and ventilation, before and after administration of three doses of adenosine (100, 500 and 1000 mu g kg-1). The effects of adenosine were also assessed in isolated perfused hearts (n= 5). Adenosine induced marked bradycardia and hypotension, associated with a significant dose-dependent increase in VNA (+204 +/- 56%, P < 0.01; +275 +/- 120%, P < 0.01; and +372 +/- 78%, P < 0.01, for the three doses, respectively; n= 7). Muscarinic blockade by atropine (5 mg kg-1, i.v.) significantly blunted the adenosine-induced bradycardia (-56.0 +/- 4.5%, P < 0.05; -86.2 +/- 10.5%, P < 0.01; and -34.3 +/- 9.7%, P < 0.01, respectively). Likewise, adenosine-induced bradycardia was markedly less in isolated heart preparations. Previous barodenervation did not modify the effects of adenosine on VNA. On the SNA side, adenosine administration was associated with a dose-dependent biphasic response, including overactivation in the first few seconds followed by a later profound SNA reduction. Earliest sympathetic activation was abolished by barodenervation, while subsequent sympathetic withdrawal was affected neither by baro- nor by chemodenervation. This is the first demonstration that acute adenosine is able to activate cardiac VNA, possibly through a central action. This increase in vagal outflow could make an important contribution to the antiarrhythmic action of this substance.
Resumo:
Exposure to mercury at nanomolar level affects cardiac function but its effects on vascular reactivity have yet to be investigated. Pressor responses to phenylephrine (PHE) were investigated in perfused rat tail arteries before and after treatment with 6 nM HgCl2 during 1 h,,in the presence (E+) and absence (E-) of endothelium, after L-NAME (10(-4) M), indomethacin (10(-5) M), enalaprilate (1 mu M), tempol (1 mu M) and deferoxamine (300 mu M) treatments. HgCl2 increased sensitivity (pD(2)) without modifying the maximum response (Em) to PHE, but the pD(2) increase was abolished after endothelial damage. L-NAME treatment increased pD(2) and Emax. However, in the presence of HgCl2, this increase was smaller, and it did not modify Emax. After indomethacin treatment, the increase of pD(2) induced by HgCl2 was maintained. Enalaprilate, tempol and deferoxamine reversed the increase of pD(2) evoked by HgCl2. HgCl2 increased the angiotensin converting enzyme (ACE) activity explaining the result obtained with enalaprilate. Results suggest that at nanomolar concentrations HgCl2 increase the vascular reactivity to PHE. This response is endothelium mediated and involves the reduction of NO bioavailability and the action of reactive oxygen species. The local ACE participates in mercury actions and depends on the angiotensin 11 generation. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Aims: The dorsal periaqueductal gray area (dPAG) is involved in cardiovascular modulation. Previously, we reported that noradrenaline (NA) microinjection into the dPAG caused a pressor response that was mediated by vasopressin release into the circulation. However, the neuronal pathway that mediates this response is as yet unknown. There is evidence that chemical stimulation of the diagonal band of Broca (dbB) also causes a pressor response mediated by systemic vasopressin release. In the present study, we evaluated the participation of the dbB in the pressor response caused by NA microinjection into the dPAG as well as the existence of neural connections between these areas. Main methods: With the above goal, we verified the effect of the pharmacological ablation of the dbB on the cardiovascular response to NA microinjection into the dPAG of unanesthetized rats. In addition, we microinjected the neuronal tracer biotinylated-dextran-amine (BDA) into the dPAG and looked for efferent projections from the dPAG to the dbB. Key findings: The pharmacologically reversible ablation of the dbB with local microinjection of CoCl(2) significantly reduced the pressor response caused by NA microinjection (15 nmol/50 nL) into the dPAG. In addition, BDA microinjection into the dPAG labeled axons in the dbB, pointing to the existence of direct connections between these areas. Significance: The present results indicate that synapses within the dbB are involved in the pressor pathway activated by NA microinjection into the VAG and direct neural projection from the dPAG to the dbB may constitute the neuroanatomic substrate for this pressor pathway. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In the present study, we describe the cardiovascular effects of local acetylcholine (Ach) microinjection into both the ventrolateral (vlPAG) and dorsal (dPAG) periaqueductal gray areas of anesthetized rats and the possible local receptors involved with these responses. Microinjection of Ach (9, 27, 45 or 81 nmol/50 nL) into the vlPAG caused dose-related depressor responses. These hypotensive responses were blocked by local pretreatment with increasing doses of the nonselective muscarinic antagonist atropine (1, 3 or 9 nmol/50 nL). The microinjection of Ach into the dPAG caused no significant cardiovascular responses in anesthetized rats. In conclusion, the present findings suggest that a cholinergic system present in the vlPAG, but not in the dPAG, is involved with cardiovascular system control. Moreover, these cardiovascular responses evoked by Ach are mediated by muscarinic receptors. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
P>In the present study, we investigated the effects of inhibition of the lateral hypothalamus (LH) neurotransmission with bilateral microinjection of CoCl(2), a non-selective blocker of neurotransmission, on modulation of cardiac baroreflex responses in conscious rats as well as the involvement of LH glutamatergic neurotransmission in this modulation. Reflex bradycardiac and tachycardiac responses to blood pressure increases (following i.v. infusion of phenylephrine) or decreases (following i.v. infusion of sodium nitroprusside) were investigated in conscious male Wistar rats. Responses were evaluated before and after microinjection of 1 nmol/100 nL CoCl(2), 2 nmol/100 nL 1,2,3,4-tetrahydro-6-nitro-2,3-dioxobenzoquinoxaline-7-sulphonamide (NBQX; a selective non-N-methyl-d-aspartate (NMDA) glutamate receptor antagonist) or different doses (2, 4 or 8 nmol/100 nL) of the selective NMDA glutamate receptor antagonist LY235959. Microinjection of CoCl(2) into the LH had no effect on the tachycardiac baroreflex response, but did evoke a decrease in the reflex bradycardia caused by increases in blood pressure. Microinjection of NBQX into the LH had a similar effect on reflex bradycardia as CoCl(2), but had no effect on the tachycardiac response. Microinjection of increasing doses of LY235959 into the LH had no effect on the cardiac baroreflex response. In conclusion, the data suggest that the LH has a tonic facilitatory influence on the parasympathetic component of the baroreflex. The results also indicate that this facilitatory influence is mediated by local LH glutamatergic neurotransmission through non-NMDA glutamatergic receptors.
Resumo:
Hypertension afflicts 25% of the general population and over 50% of the elderly. In the present work, arterial spin labeling MRI was used to non-invasively quantify regional cerebral blood flow (CBE), cerebrovascular resistance and CO(2) reactivity in spontaneously hypertensive rats (SHR) and in normotensive Wistar Kyoto rats (WKY), at two different ages (3 months and 10 months) and under the effects of two anesthetics, alpha-chloralose and 2% isoflurane (1.5 MAC). Repeated CBE measurements were highly consistent, differing by less than 10% and 18% within and across animals, respectively. Under alpha-chloralose, whole brain CBE at normocapnia did not differ between groups (young WKY: 61 3 ml/100 g/min; adult WKY: 62 +/- 4 ml/100 g/min; young SHR: 70 +/- 9 ml/100 g/min: adult SHR: 69 8 ml/100 g/min), indicating normal cerebral autoregulation in SHR. At hypercapnia, CBE values increased significantly, and a linear relationship between CBE and PaCO(2) levels was observed. In contrast, 2% isoflurane impaired cerebral autoregulation. Whole brain CBE in SHR was significantly higher than in WKY rats at normocapnia (young SHR: 139 +/- 25 ml/100 g/min; adult SHR: 104 +/- 23 ml/100 g/min; young WKY: 55 +/- 9 ml/100 g/min; adult WKY: 71 +/- 19 ml/100 g/min). CBE values increased significantly with increasing CO(2): however, there was a clear saturation of CBF at PaCO(2) levels greater than 70 mm Hg in both young and adult rats, regardless of absolute CBE values, suggesting that isoflurane interferes with the vasoclilatory mechanisms of CO(2). This behavior was observed for both cortical and subcortical structures. Under either anesthetic, CO(2) reactivity values in adult SHR were decreased, confirming that hypertension, when combined with age, increases cerebrovascular resistance and reduces cerebrovascular compliance. Published by Elsevier Inc.
Resumo:
AbstractBackground:Organ injury occurs not only during periods of ischemia but also during reperfusion. It is known that ischemia reperfusion (IR) causes both remote organ and local injuries.Objective:This study evaluated the effects of tramadol on the heart as a remote organ after acute hindlimb IR.Methods:Thirty healthy mature male Wistar rats were allocated randomly into three groups: Group I (sham), Group II (IR), and Group III (IR + tramadol). Ischemia was induced in anesthetized rats by left femoral artery clamping for 3 h, followed by 3 h of reperfusion. Tramadol (20 mg/kg, intravenous) was administered immediately prior to reperfusion. At the end of the reperfusion, animals were euthanized, and hearts were harvested for histological and biochemical examination.Results:The levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were higher in Groups I and III than those in Group II (p < 0.05). In comparison with other groups, tissue malondialdehyde (MDA) levels in Group II were significantly increased (p < 0.05), and this increase was prevented by tramadol. Histopathological changes, including microscopic bleeding, edema, neutrophil infiltration, and necrosis, were scored. The total injuryscore in Group III was significantly decreased (p < 0.05) compared with Group II.Conclusion:From the histological and biochemical perspectives, treatment with tramadol alleviated the myocardial injuries induced by skeletal muscle IR in this experimental model.
Resumo:
Two different theories of migraine aura exist: In the vascular theory of Wolff, intracerebral vasoconstriction causes migraine aura via energy deficiency, whereas in the neuronal theory of Leão and Morison, spreading depression (SD) initiates the aura. Recently, it has been shown that the cerebrovascular constrictor endothelin-1 (ET-1) elicits SD when applied to the cortical surface, a finding that could provide a bridge between the vascular and the neuronal theories of migraine aura. Several arguments support the notion that ET-1-induced SD results from local vasoconstriction, but definite proof is missing. If ET-1 induces SD via vasoconstriction/ischemia, then neuronal damage is likely to occur, contrasting with the fact that SD in the otherwise normal cortex is not associated with any lesion. To test this hypothesis, we have performed a comprehensive histologic study of the effects of ET-1 when applied topically to the cerebral cortex of halothane-anesthetized rats. Our assessment included histologic stainings and immunohistochemistry for glial fibrillary acidic protein, heat shock protein 70, and transferase dUTP nick-end labeling assay. During ET-1 application, we recorded (i) subarachnoid direct current (DC) electroencephalogram, (ii) local cerebral blood flow by laser-Doppler flowmetry, and (iii) changes of oxyhemoglobin and deoxyhemoglobin by spectroscopy. At an ET-1 concentration of 1 muM, at which only 6 of 12 animals generated SD, a microarea with selective neuronal death was found only in those animals demonstrating SD. In another five selected animals, which had not shown SD in response to ET-1, SD was triggered at a second cranial window by KCl and propagated from there to the window exposed to ET-1. This treatment also resulted in a microarea of neuronal damage. In contrast, SD invading from outside did not induce neuronal damage in the absence of ET-1 (n = 4) or in the presence of ET-1 if ET-1 was coapplied with BQ-123, an ET(A) receptor antagonist (n = 4). In conclusion, SD in presence of ET-1 induced a microarea of selective neuronal necrosis no matter where the SD originated. This effect of ET-1 appears to be mediated by the ET(A) receptor.
Resumo:
Impaired baroreflex sensitivity in diabetes is well described and has been attributed to autonomic diabetic neuropathy. In the present study conducted on acute (10-20 days) streptozotocin (STZ)-induced diabetic rats we examined: 1) cardiac baroreflex sensitivity, assessed by the slope of the linear regression between phenylephrine- or sodium nitroprusside-induced changes in arterial pressure and reflex changes in heart rate (HR) in conscious rats; 2) aortic baroreceptor function by means of the relationship between systolic arterial pressure and aortic depressor nerve (ADN) activity, in anesthetized rats, and 3) bradycardia produced by electrical stimulation of the vagus nerve or by the iv injection of methacholine in anesthetized animals. Reflex bradycardia (-1.4 ± 0.1 vs -1.7 ± 0.1 bpm/mmHg) and tachycardia (-2.1 ± 0.3 vs -3.0 ± 0.2 bpm/mmHg) were reduced in the diabetic group. The gain of the ADN activity relationship was similar in control (1.7 ± 0.1% max/mmHg) and diabetic (1.5 ± 0.1% max/mmHg) animals. The HR response to vagal nerve stimulation with 16, 32 and 64 Hz was 13, 16 and 14% higher, respectively, than the response of STZ-treated rats. The HR response to increasing doses of methacholine was also higher in the diabetic group compared to control animals. Our results confirm the baroreflex dysfunction detected in previous studies on short-term diabetic rats. Moreover, the normal baroreceptor function and the altered HR responses to vagal stimulation or methacholine injection suggest that the efferent limb of the baroreflex is mainly responsible for baroreflex dysfunction in this model of diabetes.
Resumo:
The dorsal (DRN) and median (MRN) raphe nuclei are important sources of serotonergic innervation to the forebrain, projecting to sites involved in cardiovascular regulation. These nuclei have been mapped using electrical stimulation, which has the limitation of stimulating fibers of passage. The present study maps these areas with chemical stimulation, investigating their influence on cardiorespiratory parameters. Urethane-anesthetized (1.2 g/kg, iv) male Wistar rats (280-300 g) were instrumented for pulsatile and mean blood pressure (MBP), heart rate, renal nerve activity, and respiratory frequency recordings. Microinjections of L-glutamate (0.18 M, 50-100 nl with 1% Pontamine Sky Blue) were performed within the DRN or the MRN with glass micropipettes. At the end of the experiments the sites of microinjection were identified. The majority of sites within the MRN (86.1%) and DRN (85.4%) evoked pressor responses when stimulated (DRN: deltaMBP = +14.7 ± 1.2; MRN: deltaMBP = +13.6 ± 1.3 mmHg). The changes in renal nerve activity and respiratory rate caused by L-glutamate were +45 ± 11 and +42 ± 9% (DRN; P < 0.05%), +40 ± 10 and +29 ± 7% (MRN, P < 0.05), respectively. No significant changes were observed in saline-microinjected animals. This study shows that: a) the blood pressure increases previously observed by electrical stimulation within the raphe are due to activation of local neurons, b) this pressor effect is due to sympathoexcitation because the stimulation increased renal sympathetic activity but did not produce tachycardia, and c) the stimulation of cell bodies in these nuclei also increases the respiratory rate.
Resumo:
The present study reports for the first time the incidence of congestive heart failure (CHF) in previously infarcted rats that died spontaneously. Previously, pulmonary (PWC) and hepatic (HWC) water contents were determined in normal rats: 14 control animals were evaluated immediately after sacrifice, 8 placed in a refrigerator for 24 h, and 10 left at room temperature for 24 h. In the infarcted group, 9 rats died before (acute) and 28 died 48 h after (chronic) myocardial infarction. Thirteen chronic animals were submitted only to autopsy (N = 13), whereas PWC and HWC were also determined in the others (N = 15). Seven rats survived 48 h and died during anesthesia. Notably, PWC differed in normal rats: ambient (75.7 ± 1.3%) < control (77.5 ± 0.7%) < refrigerator (79.1 ± 1.4%) and there were no differences with respect to HWC. No clinical signs of CHF (dyspnea, lethargy or foot edema) were observed in infarcted rats before death. PWC was elevated in all chronic and anesthetized rats. HWC was increased in 48% of chronic and in all anesthetized rats. Our data showed that PWC needs to be evaluated before 24 h post mortem and that CHF is the rule in chronic infarcted rats suffering natural death. The congestive syndrome cannot be diagnosed correctly in rats by clinical signs alone, as previously proposed.
Resumo:
Central angiotensin II (AngII) stimulates water and salt solution intake. Pretreatment with low-dose mineralocorticoid (DOCA) enhances this AngII-induced intake of salt solutions (the synergy theory) in Wistar and Sprague Dawley rats but not in Fischer rats. This response is mediated via the AT-1 receptor. Electrophysiological experiments using iontophoretic application of AngII and the AT-1 receptor-specific non-peptide antagonist losartan showed excitation of neurons in the preoptic/medial septum region of urethane-anesthetized male Wistar rats. DOCA pretreatment further enhances this neuronal excitation in response to AngII and reduces the responses to losartan. This generated the hypothesis that DOCA-enhanced AngII-induced neuronal excitation is the neural support for the synergy theory. AT-2 receptors modulate these intake responses depending on sodium in the diet, and diuretic-induced dehydration during pregnancy produces a higher salt intake in the offspring. AngII-induced salt and water intakes were tested in offspring from Sprague Dawley mothers with only 1.8% NaCl to drink in which half were treated with furosemide. The important observations were a) the AT-1 antagonist alone suppressed intakes in offspring from mothers not treated with furosemide, b) both AT-1 and AT-2 antagonists suppressed intakes in offspring from furosemide-treated mothers, and c) combined administration of AT-1 and AT-2 antagonists greatly suppressed water intake in offspring from mothers not treated with furosemide. These results suggest that AT-1 and AT-2 receptors have variable properties (receptor number and/or second messengers). Furthermore, the activity and function of these central AngII receptors depend on the background mineralocorticoid levels. The exact mechanism of this influence, however, remains to be determined.
Resumo:
Dipyrone (Dp) delays gastric emptying (GE) in rats. There is no information about whether 4-aminoantipyrine (AA), one of its metabolites, has the same effect. The objectives of the present study were to assess the effects of AA and Dp on GE when administered intravenously (iv) and intracerebroventricularly (icv) (240 µmol/kg and 4 µmol/animal, respectively) and on gastric compliance when administered iv (240 µmol/kg). GE was determined in male Wistar rats weighing 250-300 g (5-10 per group) after icv or iv injection of the drug by measuring percent gastric retention (GR) of a saline meal labeled with phenol red 10 min after administration by gavage. Gastric compliance was estimated in anesthetized rats (10-11 per group), with the construction of volume-pressure curves during intragastric infusion of a saline meal. Compliance was significantly greater in animals receiving Dp (mean ± SEM = 0.26 ± 0.009 mL/mmHg) and AA (0.24 ± 0.012 mL/mmHg) than in controls (0.19 ± 0.009 mL/mmHg). AA and Dp administered iv significantly increased GR (64.4 ± 2.5 and 54.3 ± 3.8%, respectively) compared to control (34 ± 2.2%), a phenomenon observed only with Dp after icv administration. Subdiaphragmatic vagotomy reduced the effect of AA (GR = 31.4 ± 1.5%) compared to sham-treated animals. Baclofen, a GABA B receptor agonist, administered icv significantly reduced the effect of AA (GR = 28.1 ± 1.3%). We conclude that Dp and AA increased gastric compliance and AA delayed GE, with the participation of the vagus nerve, through a pathway that does not involve a direct action of the drug on the central nervous system.
Resumo:
Our aim was to evaluate the effects of granulocyte colony-stimulating factor (G-CSF) on early cardiac arrhythmias after myocardial infarction (MI) and the impact on survival. Male Wistar rats received repeated doses of 50 mu g/kg G-CSF (MI-GCSF group) or vehicle (MI group) at 7, 3, and 1 days before surgery. MI was induced by permanent occlusion of left corollary artery. The electrocardiogram was obtained before occlusion and then for 30 minutes after surgery. Events and duration of ventricular arrhythmias were analyzed. The levels of connexin43 (Cx43) were measured by Western blot immediately before MI production. Survival was significantly increased in MI-GCSF pretreated group (74% versus 52.0% MI. P < 0.05). G-CSF pretreatment also significantly reduced the ventricular premature beats when compared with the untreated-MI group (201 +/- 47 versus 679 +/- 117, P < 0.05). The number and the duration of ventricular tachycardia were smaller in the MI-G-CSF group, as well as the number of ventricular fibrillation episodes (10% versus 69% in NIL P < 0.05). Cx43 levels were significantly increased by G-CSF treatment (1.27 +/- 0.13 versus 0.86 +/- 0.11; P < 0.05). The MI size 24 hours after occlusion was reduced by G-CSF pretreatment (36 +/- 3% versus 44 +/- 2% of left ventricle in MI group; P < 0.05). The increase of Cx43 expression in the heart may explain the reduced incidence in ventricular arrhythmias in the early phases after coronary artery occlusion in rats, thus increasing survival after MI.