995 resultados para UNILATERAL 6-OHDA LESION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the favorable treatment of cranial nerve neuropathology in adulthood, some cases are resistant to therapy leading to permanent functional impairments In many cases, suitable treatment is problematic as the therapeutic target remains unknown Basic fibroblast growth factor (bFGF, FGF 2) is involved in neuronal maintenance and wound repair following nervous system lesions It is one of few neurotrophic molecules acting in autocrine, paracrine and intracrine fashions depending upon specific circumstances Peripheral cranial somatic motor neurons, i e hypoglossal (XII) neurons, may offer a unique opportunity to study cellular FGF 2 mechanisms as the molecule is present in the cytoplasm of neurons and in the nuclei of astrocytes of the central nervous system FGF-2 may trigger differential actions during development, maintenance and lesion of XII neurons because axotomy of those cells leads to cell death during neonatal ages, but not in adult life Moreover, the modulatory effects of astroglial FGF 2 and the Ca+2 binding protein S100 beta have been postulated in paracrine mechanisms after neuronal lesions In our study, adult Wistar rats received a unilateral crush or transection (with amputation of stumps) of XII nerve, and were sacrificed after 72 h or 11 days Brains were processed for immunohistochemical localization of neurofilaments (NF), with or without counterstaining for Nissl substance, ghat fibrillary acidic protein (GFAP, as a marker of astrocytes), S100 beta and FGF-2 The number of Nissl positive neurons of axotomized XII nucleus did not differ from controls The NF immunoreactivity increased in the perikarya and decreased in the neuropil of axotomized XII neurons 11 days after nerve crush or transection An astrocytic reaction was seen in the ipsilateral XII nucleus of the crushed or transected animals 72 h and 11 days after the surgery The nerve lesions did not change the number of FGF-2 neurons in the ipsilateral XII nucleus, however, the nerve transection increased the number of FGF-2 ghat profiles by 72 h and 11 days Microdensitometric image analysis revealed a short lasting decrease in the intensity of FGF 2 immunoreactivity in axotomized XII neurons by 72 h after nerve crush or transection and also an elevation of FGF-2 in the ipsilateral of ghat nuclei by 72h and 11 days after the two lesions S100 beta decreased in astrocytes of 11-day transected XII nucleus The two-color immunoperoxidase for the simultaneous detection of the GFAP/FGF-2 indicated FGF-2 upregulation in the nuclei of reactive astrocytes of the lesioned XII nucleus Astroglial FGF-2 may exert paracrine trophic actions in mature axotomized XII neurons and might represent a therapeutic target for neuroprotection in peripheral nerve pathology (C) 2009 Elsevier GmbH All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rats with unilateral lesion of the substantia nigra pars compacta (SNpc) have been used as a model of Parkinson`s disease. Depending on the lesion protocol and on the drug challenge, these rats rotate in opposite directions. The aim of the present study was to propose a model to explain how critical factors determine the direction of these turns. Unilateral lesion of the SNpc was induced with 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Separate analysis showed that neither the type of neurotoxin nor the site of lesion along the nigrostriatal. pathway was able to predict the direction of the turns these rats made after they were challenged with apomorphine. However, the combination of these two factors determined the magnitude of the lesion estimated by tyrosine-hydroxylase immunohistochemistry and HPLC-ED measurement of striatal dopamine. Very small lesions did Dot cause turns, medium-size lesions caused ipsiversive turns, and large lesions caused contraversive turns. Large-size SNpc lesions resulted in an increased binding of [H-3] raclopride to D2 receptors, while medium-size lesions reduced the binding of [H-3]SCH-23390 D1 receptors in the ipsilateral striatum. These results are coherent with the model proposing that after challenged with a dopamine receptor agonist, unilaterally SNpc-lesioned rats rotate toward the side with the weaker activation of dopamine receptors. This activation is weaker on the lesioned side in animals with small SNpc lesions due to the loss of dopamine, but stronger in animals with large lesions due to dopamine receptor supersensitivity. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A doença de Parkinson (DP) é caracterizada pela degeneração progressiva dos neurônios dopaminérgicos da substância negra e por presença de sinais clínicos clássicos, tais como bradicinesia, rigidez muscular, tremor em repouso e instabilidade postural. A etiologia ainda é desconhecida e as opções de tratamento disponíveis promovem apenas o alívio dos sintomas. Nesse sentido, os modelos experimentais de DP são fundamentais em estudos visando identificar os eventos moleculares envolvidos na doença e a descoberta de novas terapias neuroprotetoras. Este trabalho utilizou um modelo de hemiparkinsonismo, com lesão induzida por 6- hidroxidopamina (6-OHDA), e investigou os efeitos do extrato aquoso de folhas de mogno (Swietenia macrophylla) sobre as células dopaminérgicas da substância negra pars compacta (SNpc) e sobre parâmetros comportamentais avaliados no teste do campo aberto e no teste de rotações induzidas por apormofina. Os resultados mostraram que os animais lesionados com 6-OHDA apresentaram rotação contralateral induzida por apomorfina e redução significativa dos neurônios dopaminérgicos na SNpc. Entretanto, apenas o grupo injetado com 6-OHDA e tratado com mogno apresentou diminuição significante de neurônios no lado injetado em comparação com o grupo veículo/veículo. Houve também um decréscimo significante na ambulação e na bipedestação no grupo 6-OHDA/mogno. Com isso, nós concluímos que o extrato aquoso de mogno, nas condições utilizadas no presente estudo, potencializou o efeito citotóxico da 6-OHDA e ainda promoveu a piora do quadro comportamental dos animais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ventral mesencephalon (VM) of fetal rat and human origin grown as free-floating roller-tube (FFRT) cultures can survive subsequent grafting to the adult rat striatum. To further explore the functional efficacy of such grafts, embryonic day 13 ventral mesencephalic tissue was grafted either after 7 days in culture or directly as dissociated cell suspensions, and compared with regard to neuronal survival and ability to normalize rotational behavior in adult rats with unilateral 6-hydroxydopamine (6-OHDA) lesions. Other lesioned rats received injections of cell-free medium and served as controls. The amphetamine-induced rotational behavior of all 6-OHDA-lesioned animals was monitored at various time points from 18 days before transplantation and up to 80 days after transplantation. Tyrosine hydroxylase (TH) immunostaining of the histologically processed brains served to assess the long-term survival of grafted dopaminergic neurons and to correlate that with the behavioral effects. Additional cultures and acutely prepared explants were also fixed and stored for histological investigation in order to estimate the loss of dopaminergic neurons in culture and after transplantation. Similar behavioral improvements in terms of significant reductions in amphetamine-induced rotations were observed in rats grafted with FFRT cultures (127%) and rats grafted with cell suspensions (122%), while control animals showed no normalization of rotational behavior. At 84 days after transplantation, there were similar numbers of TH-immunoreactive (TH-ir) neurons in grafts of cultured tissue (775 +/- 98, mean +/- SEM) and grafts of fresh, dissociated cell suspension (806 +/- 105, mean +/- SEM). Cell counts in fresh explants, 7-day-old cultures, and grafted cultures revealed a 68.2% loss of TH-ir cells 7 days after explantation, with an additional 23.1% loss after grafting, leaving 8.7% of the original number of TH-ir cells in the intracerebral grafts. This is to be compared with a survival rate of 9.1% for the TH-ir cells in the cell-suspension grafts. Immunostaining for the calcium-binding proteins calretinin, calbindin, and parvalbumin showed no differences in the neuronal expression of these proteins between the two graft types. In conclusion, we found comparable dopaminergic cell survival and functional effects of tissue-culture grafts and cell-suspension grafts, which currently is the type of graft most commonly used for experimental and clinical grafting. In this sense the result is promising for the development of an effective in vitro storage of fetal nigral tissue, which at the same time would allow neuroprotective and neurotrophic treatment prior to intracerebral transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

6-Hydroxydopamine (6-OHDA) is widely used to selectively lesion dopaminergic neurons of the substantia nigra (SN) in the creation of animal models of Parkinson’s disease. In vitro, the death of PC-12 cells caused by exposure to 6-OHDA occurs with characteristics consistent with an apoptotic mechanism of cell death. To test the hypothesis that apoptotic pathways are involved in the death of dopaminergic neurons of the SN caused by 6-OHDA, we created a replication-defective genomic herpes simplex virus-based vector containing the coding sequence for the antiapoptotic peptide Bcl-2 under the transcriptional control of the simian cytomegalovirus immediate early promoter. Transfection of primary cortical neurons in culture with the Bcl-2-producing vector protected those cells from naturally occurring cell death over 3 weeks. Injection of the Bcl-2-expressing vector into SN of rats 1 week before injection of 6-OHDA into the ipsilateral striatum increased the survival of neurons in the SN, detected either by retrograde labeling of those cells with fluorogold or by tyrosine hydroxylase immunocytochemistry, by 50%. These results, demonstrating that death of nigral neurons induced by 6-OHDA lesioning may be blocked by the expression of Bcl-2, are consistent with the notion that cell death in this model system is at least in part apoptotic in nature and suggest that a Bcl-2-expressing vector may have therapeutic potential in the treatment of Parkinson’s disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is evidence that nitric oxide plays a role in the neurotransmitter balance within the basal ganglia and in the pathology of Parkinson`s disease. In the present work we investigated in striatal 6-hydroxydopamine (6-OHDA) lesioned rats the effects of a nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine (L-NOARG), given systemically on both the dopaminergic (DA) neuronal loss and the neuronal NOS cell density. We analyzed the DA neuronal loss through tyrosine hydroxylase immunohistochemistry (TH). The nitrergic system was evaluated using an antibody against the neuronal NOS (nNOS) isoform. Treatment with the L-NOARG significantly reduced 6-OHDA-induced dopaminergic damage in the dorsal striatum, ventral substantia nigra and lateral globus pallidus, but had no effects in the dorsal substantia nigra and in the cingulate cortex. Furthermore, L-NOARG reduced 6-OHDA-induced striatal increase, and substantia nigra compacta decrease, in the density of neuronal nitric oxide synthase positive cells. These results suggest that nitric oxide synthase inhibition may decrease the toxic effects of 6-OHDA on dopaminergic terminals and on dopamine cell bodies in sub-regions of the SN and on neuronal nitric oxide synthase cell density in the rat brain. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on Parkinson’s disease (PD) has mainly focused on the degeneration of the dopaminergic neurons of nigro-striatal (NS) pathway; also, post-mortem studies have demonstrated that the noradrenergic and the serotonergic transmitter systems are also affected (Jellinger, 1999). Degeneration of these neuronal cell bodies is generally thought to start prior to the loss of dopaminergic neurons in the NS pathway and precedes the appearance of the motor symptoms that are the “hallmark” of PD. Gastrointestinal (GI) motility is often disturbed in PD, manifesting chiefly as impaired gastric emptying and constipation. These GI dysfunction symptoms may be the result of a loss in noradrenergic and serotonergic innervation. GI deficits were evaluated using an organ bath technique. Groups treated with different combinations of neurotoxins (6-OHDA alone, 6-OHDA + pCA or 6-OHDA + DSP-4) presented significant differences in gut contractility compared to control groups. Since a substantial body of literature suggests the presence of an inflammatory process in parkinsonian state (Whitton, 2007), changes in pro-inflammatory cytokines in the gut were assessed using a cytokine microarray. It has been found in this work that groups with a combined dopaminergic and noradrenergic lesion have a significant increase in both expressions of IL-13 and VEGF. IL-6 also shows a decrease in treatment groups; however this decrease did not reach statistical significance. The therapeutic value of Exendin-4 (EX-4) was evaluated. It has been previously demonstrated that EX-4, a glucagon-like peptide-1 receptor (GLP-1R) agonist, is neuroprotective in rodent models of PD (Harkavyi et al., 2008). In this thesis it has been found that EX-4 was able to reverse a decrease in gut contractility obtained through intracerebral bilateral 6-OHDA injection. Although more studies are required, EX-4 could be used as a possible therapy for the GI symptoms prominent in the early stages of PD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons of the substantia nigra pars compacta with unknown aetiology. 6-Hydroxydopamine (6-OHDA) treatment of neuronal cells is an established in vivo model for mimicking the effect of oxidative stress found in PD brains. We examined the effects of 6-OHDA treatment on human neuroblastoma cells (SH-SY5Y) and primary mesencephalic cultures. Using a reverse arbitrarily primed polymerase chain reaction (RAP-PCR) approach we generated reproducible genetic fingerprints of differential expression levels in cell cultures treated with 6-OHDA. Of the resulting sequences, 23 showed considerable homology to known human coding sequences. The results of the RAP-PCR were validated by reverse transcription PCR, real-time PCR and, for selected genes, by Western blot analysis and immunofluorescence. In four cases, [tomoregulin-1 (TMEFF-1), collapsin response mediator protein 1 (CRMP-1), neurexin-1, and phosphoribosylaminoimidazole synthetase (GART)], a down-regulation of mRNA and protein levels was detected. Further studies will be necessary on the physiological role of the identified proteins and their impact on pathways leading to neurodegeneration in PD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To identify clinical and pupillographic features of patients with a relative afferent pupillary defect (RAPD) without visual acuity or visual field loss caused by a lesion in the dorsal midbrain. DESIGN: Experimental study. PARTICIPANTS AND CONTROLS: Four patients with a dorsal midbrain lesion who had normal visual fields and a clinically detectable RAPD. METHODS: The pupil response from full-field and hemifield light stimulation over a range of light intensities was measured by computerized binocular pupillography. MAIN OUTCOME MEASURES: The mean of the direct and consensual pupil response to full-field and hemifield light stimulation was plotted as a function of stimulus light intensity. RESULTS: All 4 subjects showed decreased pupillographic responses at all intensities to full-field light stimulation in the eye with the clinical RAPD. The pupillographic responses to hemifield stimulation showed a homonymous pattern of deficit on the side ipsilateral to the RAPD, similar to that observed in a previously reported patient with an optic tract lesion. CONCLUSIONS: The basis of a midbrain RAPD is the nasal-temporal asymmetry of pupillomotor input that becomes manifest when a unilateral postchiasmal lesion interrupts homonymously paired fibers traveling in the contralateral optic tract or midbrain pathway to the pupillomotor center, respectively. The pupillographic characteristics of an RAPD resulting from a dorsal midbrain lesion thus resemble those of an RAPD resulting from a unilateral optic tract lesion, but without the homonymous visual field defect. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parkinson’s disease is a chronic progressive neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the SNpc resulting in severe motor impairments. Serotonergic system plays an important regulatory role in the pathophysiology of PD in rats, the evaluation of which provides valuable insight on the underlying mechanisms of motor, cognitive and memory deficits in PD. We observed a decrease in 5-HT content in the brain regions of 6-OHDA infused rat compared to control. The decreased 5-HT content resulted in a decrease of total 5-HT, 5-HT2A receptors and 5-HTT function and an increase of 5-HT2C receptor function. 5-HT receptor subtypes - 5-HT2A and 5-HT2C receptors have differential regulatory role on the modulation of DA neurotransmission in different brain regions during PD. Our observation of impaired serotonergic neurotransmission in SNpc, corpus striatum, cerebral cortex, hippocampus, cerebellum and brain stem demonstrate that although PD primarily results from neurodegeneration in the SNpc, the associated neurochemical changes in other areas of the brain significantly contributes to the different motor and non motor symptoms of PD. The antioxidant enzymes – SOD, CAT and GPx showed significant down regulation which indicates increased oxidative damage resulting in neurodegeneration. We also observed an increase in the level of lipid peroxidation. Reduced expression of anti-apoptotic Akt and enhanced expression of NF-B resulting from oxidative stress caused an activation of caspase-8 thus leading the cells to neurodegeneration by apoptosis. BMC administration in combination with 5-HT and GABA to PD rats showed reversal of the impaired serotonergic neurotransmission and oxidative stress mediated apoptosis. The transplanted BMC expressed NeuN confirming that 5-HT and GABA induced the differentiation and proliferation of BMC to neurons in the SNpc along with an increase in DA content and an enhanced expression of TH. Neurotrophic factors – BDNF and GDNF rendered neuroprotective effects accompanied by improvement in behavioural deficits indicating a significant reversal of altered dopaminergic and serotonergic neurotransmission in PD. The restorative and neuroprotective effects of BMC in combination with 5-HT and GABA are of immense therapeutic significance in the clinical management of PD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Riluzole is a neuroprotective drug used in the treatment of motor neurone disease. Recent evidence suggests that riluzole can up-regulate the expression and activity of the astrocyte glutamate transporter, GLT-1. Given that regulation of glutamate transport is predicted to be neuroprotective in Parkinson's disease, we tested the effect of riluzole in parkinsonian rats which had received a unilateral 6-hydroxydopamine injection into the median forebrain bundle. Results Rats were treated with intraperitoneal riluzole (4 mg/kg or 8 mg/kg), 1 hour before the lesion then once daily for seven days. Riluzole produced a modest but significant attenuation of dopamine neurone degeneration, assessed by suppression of amphetamine-induced rotations, preservation of tyrosine hydroxylase positive neuronal cell bodies in the substantia nigra pars compacta and attenuation of striatal tyrosine hydroxylase protein loss. Seven days after 6-hydroxydopamine lesion, reactive astrocytosis was observed in the striatum, as determined by increases in expression of glial fibrillary acidic protein, however the glutamate transporter, GLT-1, which is also expressed in astrocytes was not regulated by the lesion. Conclusions The results confirm that riluzole is a neuroprotective agent in a rodent model of parkinson’s disease. Riluzole administration did not regulate GLT-1 levels but significantly reduced GFAP levels, in the lesioned striatum. Riluzole suppression of reactive astrocytosis is an intriguing finding which might contribute to the neuroprotective effects of this drug.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Locus coeruleus (LC) has been suggested as a CO2 chemoreceptor site in mammals. In the present study, we assessed the role of LC noradrenergic neurons in the cardiorespiratory and thermal responses to hypercapnia. To selectively destroy LC noradrenergic neurons, we administered 6-hydroxydopamine (6-OHDA) bilaterally into the LC of male Wistar rats. Control animals had vehicle (ascorbic acid) injected (sham group) into the LC. Pulmonary ventilation (plethysmograph), mean arterial pressure (MAP), heart rate (HR), and body core temperature (T-c, data loggers) were measured followed by 60 min of hypercapnic exposure (7% CO2 in air). To verify the correct placement and effectiveness of the chemical lesions, tyrosine hydroxylase immunoreactivity was performed. Hypercapnia caused an increase in pulmonary ventilation in all groups, which resulted from increases in respiratory frequency and tidal volume (V-T) in sham-operated and 6-OHDA-lesioned groups. The hypercapnic ventilatory response was significantly decreased in 6-OHDA-lesioned rats compared with sham group. This difference was due to a decreased V-T in 6-OHDA rats. LC chemical lesion or hypercapnia did not affect MAP, HR, and T-c. Thus, we conclude that LC noradrenergic neurons modulate hypercapnic ventilatory response but play no role in cardiovascular and thermal regulation under resting conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of testosterone on the development of the pressor response to common carotid occlusion was investigated in control and median eminence-lesioned male rats. In control rats (N = 9), gonadectomy performed 21 days before the experiments reduced by 22% (from 51 +/- 2 to 40 +/- 2 mmHg) and treatment with testosterone (300-mu-g for 4 days before the measurements) increased the initial peak pressor response (from 51 +/- 2 to 57 +/- 2 mmHg) which depends on carotid innervation. The maintained response which is of central origin (probably ischemic) was less affected. In nongonadectomized rats (N = 6), lesions of the median eminence (6 days) decreased the initial peak by 19% (from 52 +/- 2 to 42 +/- 3 mmHg) and the maintained response by 56% (from 32 +/- 2 to 14 +/- 1 mmHg). Sham-operated rats served as controls. In gonadectomized animals (N = 6) the lesion reduced only the maintained response (from 23 +/- 2 to 11 +/- 1 mmHg). Testosterone supplementation restored the maintained response but did not alter the initial peak. These results indicate that the pressor response to common carotid occlusion in male rats is modulated by testosterone and that the depression in the maintained response caused by median eminence lesion can be reversed by steroid supplementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)