917 resultados para ULTRASONOGRAPHIC IMAGING
Resumo:
The clinical and neurological findings of three neonates with the diagnosis of cerebrovascular disease are reported. The neuropsychological evaluation disclosed impairment of fine motor function, coordination, language, perception and behavioral disturbances. Brain SPECT imaging revealed perfusional deficits in the three cases.
Resumo:
OBJECTIVE: To describe the role of magnetic resonance imaging (MRI) in the evaluation of patients with chronic and recurrent aseptic meningitis.METHOD: A retrospective study of five patients with aseptic meningoencefalitis diagnosed by clinical and CSF findings. CT scans showed without no relevant findings. RESULTS: MRI showed small multifocal lesions hyperintense on T2 weighted images and FLAIR, with mild or no gadolinium enhancement, mainly in periventricular and subcortical regions. Meningoencephalitis preceded the diagnosis of the underlying disease in four patients (Behçet´s disease or systemic lupus erythematosus). After the introduction of adequate treatment for the rheumatic disease, they did not present further symptoms of aseptic meningoencephalitis. CONCLUSION: Aseptic meningoencephalitis can be an early presentation of an autoimmune disease. It is important to emphasize the role of MRI in the diagnosis and follow-up of these patients.
Resumo:
Report of an early case of Shy-Drager syndrome in a 67 year-old woman patient. Autonomic failure was diagnosed by functional evaluation as well as laboratory tests. MR imaging disclosed a prominent putamina hypodensity in T2-weighted images at high field strength due to iron increased depositing in this basal ganglia. MR imaging evidences confirm Shy-Drager syndrome diagnosis, and contributes for differential diagnosis of idiopathic hypotension (pure autonomic failure) in special in SDS early cases.
Resumo:
McCune-Albright syndrome is characterized by the triad café-au-lait cutaneous spots, polyostotic fibrous dysplasia and endocrinopathies. This article presents two cases of McCune-Albright syndrome in a middle-aged woman and a young girl. Both patients presented café-au-lait spots on the face and other parts of the body and expansion of the mandible with radiopaque-radiolucent areas with ground-glass radiographic appearance, and were diagnosed as having fibrous dysplasia and endocrine disorders. The patient of Case 1 had fibrous dysplasia on the upper and lower limbs, thorax, face and cranium, early puberty, hyperglycemia, hyperthyroidism and high serum alkaline phosphatase levels. The patient of Case 2 presented lesions on the upper limbs and evident endocrine disorders. In both cases presented in this article, the initial exam was made because of the mandibular lesion. However, a diagnosis of fibrous dysplasia must lead to investigation of the involvement of other bones, characterizing polyostotic fibrous dysplasia, which is manifested in a number of diseases. An accurate differential diagnosis is mandatory to determine the best treatment approach for each case.
Resumo:
Objectives: Adults with major depressive disorder (MDD) are reported to have reduced orbitofrontal cortex (OFC) volumes, which could be related to decreased neuronal density. We conducted a study on medication naive children with MDD to determine whether abnormalities of OFC are present early in the illness course. Methods: Twenty seven medication naive pediatric Diagnostic and Statistical Manual of Mental Disorders, 4(th) edition (DSM-IV) MDD patients (mean age +/- SD = 14.4 +/- 2.2 years; 10 males) and 26 healthy controls (mean age +/- SD = 14.4 +/- 2.4 years; 12 males) underwent a 1.5T magnetic resonance imaging (MRI) with 3D spoiled gradient recalled acquisition. The OFC volumes were compared using analysis of covariance with age, gender, and total brain volume as covariates. Results: There was no significant difference in either total OFC volume or total gray matter OFC volume between MDD patients and healthy controls. Exploratory analysis revealed that patients had unexpectedly larger total right lateral (F = 4.2, df = 1, 48, p = 0.05) and right lateral gray matter (F = 4.6, df = 1, 48, p = 0.04) OFC volumes compared to healthy controls, but this finding was not significant following statistical correction for multiple comparisons. No other OFC subregions showed a significant difference. Conclusions: The lack of OFC volume abnormalities in pediatric MDD patients suggests the abnormalities previously reported for adults may develop later in life as a result of neural cell loss.
Resumo:
Purpose: To evaluate patellar kinematics of volunteers Without knee pain at rest and during isometric contraction in open- and closed-kinetic-chain exercises. Methods: Twenty individuals took part in this study. All were submitted to magnetic resonance imaging (MRI) during rest and voluntary isometric contraction (VIC) in the open anti closed kinetic chain at 15 degrees, 30 degrees, and 45 degrees of knee flexion. Through MRI and using medical e-film software, the following measurements were evaluated: sulcus angle, patellar-tilt angle, and bisect offset. The mixed-effects linear model was used for comparison between knee positions, between rest and isometric contractions, and between (he exercises. Results: Data analysis revealed that the sulcus angle decreased as knee flexion increased and revealed increases with isometric contractions in both the open and closed kinetic chain for all knee-flexion angles. The patellar-tilt angle decreased with isometric contractions in both the open and closed kinetic chain for every knee position. However, in the closed kinetic chain, patellar tilt increased significantly with the knee flexed at 15 degrees. The bisect offset increased with the knee flexed at 15 degrees during isometric contractions and decreased as knee flexion increased during both exercises. Conclusion: VIC in the last degrees of knee extension may compromise patellar dynamics. On the other hand, it is possible to favor patellar stability by performing muscle contractions with the knee flexed at 30 degrees and 45 degrees in either the open or closed kinetic chain.
Resumo:
Doppler images in Balmer, He I, He II and C II lines, and simultaneous I-band photometry of the polar MR Ser are presented and analyzed. The Balmer and Helium Doppler tomograms, of this bright polar at high mass transfer state show the emission from the accretion flow and the heated surface of the companion star. As a result of a comparison between the Doppler tomograms, the ionization structure of the flow could be constrained. The highest ionization region was found in the vicinity of the magnetospheric radius. Photoionization modeling of the accretion column indicates that the Balmer and Helium emission line production in this system can be explained only by the central soft X-ray illumination. The orbital ephemeris of MR Ser has been revised.
Resumo:
Context. The star HD 87643, exhibiting the ""B[e] phenomenon"", has one of the most extreme infrared excesses for this object class. It harbours a large amount of both hot and cold dust, and is surrounded by an extended reflection nebula. Aims. One of our major goals was to investigate the presence of a companion in HD87643. In addition, the presence of close dusty material was tested through a combination of multi-wavelength high spatial resolution observations. Methods. We observed HD 87643 with high spatial resolution techniques, using the near-IR AMBER/VLTI interferometer with baselines ranging from 60 m to 130 m and the mid-IR MIDI/VLTI interferometer with baselines ranging from 25 m to 65 m. These observations are complemented by NACO/VLT adaptive-optics-corrected images in the K and L-bands, and ESO-2.2m optical Wide-Field Imager large-scale images in the B, V and R-bands. Results. We report the direct detection of a companion to HD 87643 by means of image synthesis using the AMBER/VLTI instrument. The presence of the companion is confirmed by the MIDI and NACO data, although with a lower confidence. The companion is separated by similar to 34 mas with a roughly north-south orientation. The period must be large (several tens of years) and hence the orbital parameters are not determined yet. Binarity with high eccentricity might be the key to interpreting the extreme characteristics of this system, namely a dusty circumstellar envelope around the primary, a compact dust nebulosity around the binary system and a complex extended nebula suggesting past violent ejections.
Resumo:
Context. Mass-loss occurring in red supergiants (RSGs) is a major contributor to the enrichment of the interstellar medium in dust and molecules. The physical mechanism of this mass loss is however relatively poorly known. Betelgeuse is the nearest RSG, and as such a prime object for high angular resolution observations of its surface (by interferometry) and close circumstellar environment. Aims. The goal of our program is to understand how the material expelled from Betelgeuse is transported from its surface to the interstellar medium, and how it evolves chemically in this process. Methods. We obtained diffraction-limited images of Betelgeuse and a calibrator (Aldebaran) in six filters in the N band (7.76 to 12.81 mu m) and two filters in the Q band (17.65 and 19.50 mu m), using the VLT/VISIR instrument. Results. Our images show a bright, extended and complex circumstellar envelope at all wavelengths. It is particularly prominent longwards of approximate to 9-10 mu m, pointing at the presence of O-rich dust, such as silicates or alumina. A partial circular shell is observed between 0.5 and 1.0 '' from the star, and could correspond to the inner radius of the dust envelope. Several knots and filamentary structures are identified in the nebula. One of the knots, located at a distance of 0.9 '' west of the star, is particularly bright and compact. Conclusions. The circumstellar envelope around Betelgeuse extends at least up to several tens of stellar radii. Its relatively high degree of clumpiness indicates an inhomogeneous spatial distribution of the material lost by the star. Its extension corresponds to an important intermediate scale, where most of the dust is probably formed, between the hot and compact gaseous envelope observed previously in the near infrared and the interstellar medium.
Resumo:
Multispectral widefield optical imaging has the potential to improve early detection of oral cancer. The appropriate selection of illumination and collection conditions is required to maximize diagnostic ability. The goals of this study were to (i) evaluate image contrast between oral cancer/precancer and non-neoplastic mucosa for a variety of imaging modalities and illumination/collection conditions, and (ii) use classification algorithms to evaluate and compare the diagnostic utility of these modalities to discriminate cancers and precancers from normal tissue. Narrowband reflectance, autofluorescence, and polarized reflectance images were obtained from 61 patients and 11 normal volunteers. Image contrast was compared to identify modalities and conditions yielding greatest contrast. Image features were extracted and used to train and evaluate classification algorithms to discriminate tissue as non-neoplastic, dysplastic, or cancer; results were compared to histologic diagnosis. Autofluorescence imaging at 405-nm excitation provided the greatest image contrast, and the ratio of red-to-green fluorescence intensity computed from these images provided the best classification of dysplasia/cancer versus non-neoplastic tissue. A sensitivity of 100% and a specificity of 85% were achieved in the validation set. Multispectral widefield images can accurately distinguish neoplastic and non-neoplastic tissue; however, the ability to separate precancerous lesions from cancers with this technique was limited. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3516593]
Resumo:
Study design: Evaluation of knees of tetraplegic patients who have been walking for several months with the aid of a system that involves neuromuscular stimulation, treadmill and a harness support device. Objectives: To investigate if the training program could cause knee injury to tetraplegic patients. Setting: Hospital das Clinicas - UNICAMP. Campinas-SP, Brazil. Methods: Nine patients were evaluated. Clinical exam and magnetic resonance images (MRIs) were used for evaluation. MRIs were taken before and after the training program, in a 6-month interval for each patient. There were two sessions of training every week. Each session lasted 20 min. Results: No severe clinical abnormality was observed in any patient. Mild knee injury was observed in four of nine patients studied. Conclusions: Tetraplegic patients undergoing treadmill gait training deserve a close follow-up to prevent knee injury.
Resumo:
A round robin program zoos conducted to assess the ability of three different X-radiographic systems for imaging internal fatigue cracks in riveted lap joints of composite glass reinforced fiber/metal laminate. From an engineering perspective, conventional film radiography and direct radiography have produced the best results, identifying and characterizing in detail internal damage on metallic faying surfaces of fastened glass reinforced fiber/metal laminate joints. On the other hand, computed radiographic images presented large projected geometric distortions and feature shifts due to the angular incident radiation beam, disclosing only partial internal cracking patterns.
Resumo:
One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on electrical potential measurements at its boundary generated by an imposed electrical current distribution into the boundary. One of the methods used in dynamic estimation is the Kalman filter. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, poor tracking ability of the extended Kalman filter (EKF) is achieved. An analytically developed evolution model is not feasible at this moment. The paper investigates the identification of the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model transition matrix is identified using the history of the estimated resistivity distribution obtained by a sensitivity matrix based algorithm and a Newton-Raphson algorithm. To numerically identify the linear evolution model, the Ibrahim time-domain method is used. The investigation is performed by numerical simulations of a domain with time-varying resistivity and by experimental data collected from the boundary of a human chest during normal breathing. The obtained dynamic resistivity values lie within the expected values for the tissues of a human chest. The EKF results suggest that the tracking ability is significantly improved with this approach.
Resumo:
The classical approach for acoustic imaging consists of beamforming, and produces the source distribution of interest convolved with the array point spread function. This convolution smears the image of interest, significantly reducing its effective resolution. Deconvolution methods have been proposed to enhance acoustic images and have produced significant improvements. Other proposals involve covariance fitting techniques, which avoid deconvolution altogether. However, in their traditional presentation, these enhanced reconstruction methods have very high computational costs, mostly because they have no means of efficiently transforming back and forth between a hypothetical image and the measured data. In this paper, we propose the Kronecker Array Transform ( KAT), a fast separable transform for array imaging applications. Under the assumption of a separable array, it enables the acceleration of imaging techniques by several orders of magnitude with respect to the fastest previously available methods, and enables the use of state-of-the-art regularized least-squares solvers. Using the KAT, one can reconstruct images with higher resolutions than was previously possible and use more accurate reconstruction techniques, opening new and exciting possibilities for acoustic imaging.
Resumo:
In Part I [""Fast Transforms for Acoustic Imaging-Part I: Theory,"" IEEE TRANSACTIONS ON IMAGE PROCESSING], we introduced the Kronecker array transform (KAT), a fast transform for imaging with separable arrays. Given a source distribution, the KAT produces the spectral matrix which would be measured by a separable sensor array. In Part II, we establish connections between the KAT, beamforming and 2-D convolutions, and show how these results can be used to accelerate classical and state of the art array imaging algorithms. We also propose using the KAT to accelerate general purpose regularized least-squares solvers. Using this approach, we avoid ill-conditioned deconvolution steps and obtain more accurate reconstructions than previously possible, while maintaining low computational costs. We also show how the KAT performs when imaging near-field source distributions, and illustrate the trade-off between accuracy and computational complexity. Finally, we show that separable designs can deliver accuracy competitive with multi-arm logarithmic spiral geometries, while having the computational advantages of the KAT.