997 resultados para ULTRAPOTASSIC ROCKS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The O18/O16 ratios of coexisting minerals from a number of regionally metamorphosed rocks have been measured, using a bromine pentafluoride extraction-technique. Listed in order of their increasing tendency to concentrate O18, the minerals analyzed are magnetite, ilmenite, chlorite, biotite, garnet, hornblende, kyanite, muscovite, feldspar, and quartz. The only anomalous sequence detected occurs in a xenolith of schist, in which quartz, muscovite, biotite, and ilmenite, but not garnet, have undergone isotopic exchange with surrounding trondjemite.

With few exceptions, quartz-magnetite and quartz-ilmenite fractionations decrease with increasing metamorphic grade determined by mineral paragenesis and spatial distribution. This consistency does not apply to quartz-magnetite and quartz-ilmenite fractionations obtained from rocks in which petrographic evidence of retrogradation is present.

Whereas measured isotopic fractionations among quartz, garnet, ilmenite, and magnetite are approximately related to metamorphic grade, fractionations between these minerals and biotite or muscovite show poor correlation with grade. Variations in muscovite-biotite fractionations are relatively small. These observations are interpreted to mean that muscovite and biotite are affected by retrograde re-equilibration to a greater extent than the anhydrous minerals analyzed.

Measured quartz-ilmenite fractionations range from 12 permil in the biotite zone of central Vermont to 6.5 permil in the sillimanite-orthoclase zone of southeastern Connecticut. Analyses of natural assemblages from the kyanite and sillimanite zones suggest that equilibrium quartz-ilmenite fractionations are approximately 8 percent smaller than corresponding quartz-magnetite fractionations. Employing the quartz-magnetite geothermometer calibrated by O'Neil and Clayton (1964), a temperature of 560°C was obtained for kyanite-bearing schists from Addison County, Vermont. Extending the calibration to quartz-ilmenite fractionations, a temperature of 600°C was obtained for kyanite-schists from Shoshone County, Idaho. At these temperatures kyanite is stable only at pressures exceeding 11 kbars (Bell, 1963), corresponding to lithostatic loads of over 40 km.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive Rubidium-Strontium age determinations on both mineral and total rock samples of the crystalline rocks of New Zealand, which almost solely crop out in the South Island, indicate widespread plutonic and metamorphic activity occurred during two periods, one about 100-118 million years ago and the other about 340-370 million years ago. The former results date the Rangitata Orogeny as Cretaceous. They associate extensive plutonic activity with this orogeny which uplifted and metamorphosed the rocks of the New Zealand Geosyncline, although no field association between the metamorphosed geosynclinal rocks and plutonic rocks has been found. The Cretaceous plutonic rocks occur to the west in the Foreland Province in Fiordland, Nelson, and Westland, geographically separated from the Geosynclinal Province. Because of this synchronous timing of plutonic and high pressure metamorphic activity in spatially separated belts, the Rangitata Orogeny in New Zealand is very similar to late Mesozoic orogenic activity in many other areas of the circum-Pacific margin (Miyashiro, 1961).

The 340-370 million year rocks, both plutonic and metamorphic, have been found only in that part of the Foreland Province north of the Alpine Fault. There, they are concentrated along the west coast over a distance of 500 km, and appear scattered inland from the coast. Probably this activity marks the outstanding Phanerozoic stratigraphic gap in New Zealand which occurred after the Lower Devonian.

A few crystalline rocks in the Foreland Province north of the Alpine Fault with measured ages intermediate between 340 and 120 million years have been found. Of these, those with more than one mineral examined give discordant results. All of these rocks are tentatively regarded as 340-370 million year old rocks that have been variously disturbed during the Rangitata Orogeny, 100-120 million years ago.

In addition to these two periods, plutonic activity, dominantly basic and ultrabasic, but including the development of some rocks of intermediate and acidic composition, occurred along the margin of the Geosynclinal Province at its border with the Foreland Province during Permian times about 245 million years ago, and this activity possibly extended into the Mesozoic.

Evidence from rubidium-strontium analyses of minerals and a total rock, and from uranium, thorium, and lead analyses of uniform euhedral zircons from a meta-igneous portion of the Charleston Gneiss, previously mapped as Precambrian, indicate that this rock is a 350-370 million year old plutonic rock metamorphosed 100 million yea rs ago during the Rangitata Orogeny. No crystalline rocks with primary Precambrian ages have been found in New Zealand. However, Pb207/Pb206 ages of 1360 million years and 1370 million years have been determined for rounded detrital zircons separated from each of two hornfels samples of one of New Zealand's olde st sedimentary units, the Greenland Series. These two samples were metamorphosed 345- 370 million years ago. They occur along the west coast, north of the Alpine Fault, at Waitaha River and Moeraki River, separated by 135 km. The Precambrian measured ages are most likely minimum ages for the oldest source area which provided the detrital zircons because the uranium, thorium and lead data are highly discordant. These results are of fundamental importance for the tectonic picture of the Southwest Pacific margin and demonstrate the existence of relatively old continental crust of some lateral extent in the neighborhood of New Zealand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lamprófiros e diabásios alcalinos afloram no litoral dos estados de São Paulo e Rio de Janeiro e integram o Enxame de Diques da Serra do Mar (EDSM). Essas rochas ocorrem sob a forma de diques e intrudem o Orógeno Ribeira, de idade Neoproterozóica/Cambro-Ordoviciana, inserindo-se no contexto geodinâmico de abertura do Oceano Atlântico Sul durante o Cretáceo Superior. Essas intrusões são subverticais e orientam-se preferencialmente a NE-SW, seguindo a estruturação das rochas encaixantes. Os lamprófiros são classificados como monchiquitos e camptonitos e exibem, respectivamente, textura hipocristalina e holocristalina. Apresentam também textura panidiomórfica, fenocristais de clinopiroxênio e olivina, imersos em matriz formada essencialmente por esses mesmos minerais, além de biotita, kaersutita e minerais opacos. O camptonito apresenta ainda plagioclásio na matriz. Os diabásios alcalinos são hipocristalinos a holocristalinos, equigranulares a inequigranulares, com fenocristais de olivina e/ou clinopiroxênio e/ou plagioclásio, em uma matriz composta essencialmente por esses minerais. As rochas estudadas caracterizam séries alcalinas miaskíticas, com os lamprófiros sendo tanto sódicos, potássicos e ultrapotássicos e os diabásios alcalinos como predominantemente sódicos. Modelagens petrogenéticas envolvendo possíveis processos evolutivos mostram que é improvável que os lamprófiros sejam cogenéticos por processos evolutivos envolvendo tanto cristalização fracionada, com ou sem assimilação concomitante, quanto hibridização. O mesmo ocorre para os diabásios alcalinos. A discriminação de fontes mantélicas foi feita com base nos teores de elementos traços de amostras representativas de líquidos parentais e indica que esse magmatismo alcalino está relacionado a fontes lherzolíticas com fusão parcial na zona de estabilidade do espinélio, isto é, a poucas profundidades. Os dados litogeoquímicos e isotópicos do sistema Sr-Nd das rochas estudadas sugerem tanto o envolvimento de fontes férteis, associadas ao manto sublitosférico, quanto de fontes enriquecidas, relacionadas ao manto litosférico subcontinental. Modelagens de mistura binária revelam que a petrogênese dos lamprófiros e diabásios alcalinos envolveu uma grande participação de um componente fértil misturado com contribuições menores de um componente enriquecido. Idades TDM (760-557 Ma) obtidas sugerem remobilização do manto litosférico no Neoproterozóico, talvez relacionadas à subducção da Placa São Francisco preteritamente à colisão do Orógeno Ribeira. Altas razões CaO/Al2O3 para os líquidos lamprofíricos menos evoluídos, altos teores de Zr, correlações negativas Zr/Hf e Ti/Eu e associação com carbonatitos indicam condições metassomáticas de alto CO2/H2O. Em escala local, modelos geodinâmicos baseados na astenosfera não isotérmica parecem mais aplicáveis. No entanto, modelos geodinâmicos baseados na astenosfera isotérmica (com o envolvimento de plumas) parecem mais indicados num contexto regional, considerando-se outras províncias alcalinas contemporâneas e correlatas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volcanic rocks both from the northern East China Sea (NECS) shelf margin and the northern Okinawa Trough are subalkaline less aluminous, and lower in High Field Strength Elements (HFSE). These rocks are higher in Large Ion Lithophile Elements (LILE), thorium and uranium contents, positive lead anomalies, negative Nb-Ta anomalies, and enrichment in Light Rare Earth Elements (LREE). Basalts from the NECS shelf margin are akin to Indian Ocean Mid-Ocean Ridge Basalt (MORB), and rhyolites from the northern Okinawa Trough have the highest Pb-207/Pb-208 and Pb-208/Pb-204 ratios. The NECS shelf margin basalts have lower Sr-87/Sr-86 ratios, epsilon(Nd) and sigma O-18 than the northern Okinawa Trough silicic rocks. According to K-40-Ar-40 isotopic ages of basalts from the NECS shelf margin, rifting of the Okinawa Trough may have been active since at least 3.65-3.86 Ma. The origin of the NECS shelf margin basalt can be explained by the interaction of melt derived from Indian Ocean MORB-like mantle with enriched subcontinental lithosphere. The basalts from both sides of the Okinawa Trough may have a similar origin during the initial rifting of the Okinawa Trough, and the formation of basaltic magmas closely relates to the thinning of continental crust. The source of the formation of the northern Okinawa Trough silicic rocks was different from that of the middle Okinawa Trough, which could have been generated by the interaction of basaltic melt with an enriched crustal component. From the Ryukyu island arc to East China, the Cenozoic basalts have apparently increasing trends of MgO contents and ratios of LREE to Heavy Rare Earth Elements (HREE), suggesting that the trace element variabilities of basalts may have been influenced by the subduction of the Philippine Sea plate, and that the effects of subduction of the Philippine Sea plate on the chemical composition of basaltic melts have had a decreasing effect from the Ryukyu island arc to East China.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volcanic rocks from the northern and middle Okinawa Trough were dated by uranium-series dating method. Differential fractions using magnetic procedure were designed to separate samples. New report on the ages and isotopic data of rocks in the northern trough (especially black pumice) was discussed. Based on the uranium dates and Sr-Nd isotopic ratio, magmatic evolution process of the Okinawa Trough was noted. Firstly, there have been wide silicic volcanic activities in the Okinawa Trough from late Pleistocene to present, and the volcanic rocks can be divided into three subgroups. Secondly, magma generally came from PREMA source area under the Okinawa Trough. Magmatic evolution in the northern trough was similar to the middle, but different to the south. Finally, volcanic activities indicated that opening of the southern Okinawa Trough did not happen due to the collision between Luson Arc and Eurasian Plate until the early Pleistocene.