981 resultados para U-series Dating
Resumo:
Based on chronological and climatologic analysis of many young stalagmites in Shihua Cave at Beijing and Water Cave in Benxi, Liaoning Province, this dissertation aims to discuss some key points on quantitative reconstruction of high resolution climate change from micro bands time series in young stalagmites. On chronological aspect of micro bands time series in young stalagmite, the uppermost micro bands were testified formed in the sampling year or the year before sampling from long term and in situ experiment in Shihua Cave at Beijing. Have been observed detailed under microscope, the micro bands were counted and compared with high resolution TIMS-230Th or ICP-MS U series dating, the results show that the micro bands are annual bands. The microscopic characteristics of annual bands in North China is as follows after studying lots of young stalagmites: the interface appears to be carved, and there is a light line adjacent to it, which moves back and forth slightly when adjusting the microscope slide. The cross dating of annual bands from different stalagmites is experimented in this thesis. On climatologically aspect of micro bands times series in young stalagmites, one significant problem is that the deposition trend resulting from the variation of the stalagmite shape. Various deposition trends have been discussed and corrected before climatologically analysis of micro bands series. And the whole year in situ observation and analysis of dripping water in Shihua Cave provide us new evidence for climate information reserved in stalagmites micro bands. The stalagmites in the same cave may contain different climate information due to the micro hydrological condition. The annual bands of young stalagmites collected from North China can be used to reconstruct past climate changes quantitatively. The warm season temperature (May, June, July, August) is reconstructed using two annual bands time series from Shihua Cave, Beijing, which corresponds to the warm/cool periods very well in Chinese history documents. The precipitation record of past 500 years is reconstructed using two stalagmite annual bands series from Shihua Cave, which is consistent to the dryness/wetness records derived from historical documents too.
Resumo:
The Great Cave of Niah in Sarawak (northern Borneo) came into the gaze of Western Science through the work of Alfred Russell Wallace, who came to Sarawak in the 1850s to search for ‘missing links’ in his pioneering studies of evolution and the natural history of Island Southeast Asia and Australasia. The work of Tom and Barbara Harrisson in the 1950s and 1960s placed the Great Cave, and particularly their key find, the ‘Deep Skull’, at the nexus of the evolving archaeological framework for the region: for decades the skull, dated in 1958 by adjacent charcoal to c.40,000 BP, was the oldest fossil of an anatomically modern human anywhere in the world and thus critical to ideas about human evolution and dispersal. Although several authorities later questioned the provenance and antiquity of the Deep Skull, renewed investigations of the Harrisson excavations since 2000 have shown that it can be attributed securely to a specific location in the Pleistocene stratigraphy, with direct U-series dating on a piece of the skull indicating an age for it of c.37,500 BP and the first evidence for associated human activity at the site going back to c.50,000 BP. The new work also indicates that the skull is part of a cultural deposit, perhaps a precursor to the long tradition in Borneo of processing of the dead and secondary burial. These indicators of cultural complexity chime with the complexity of the subsistence behaviour of the early users of the caves discussed by Philip Piper and Ryan Rabett in chapter ten of this volume.
Resumo:
Large storm-relocated Porites coral blocks are widespread on the reef flats of Nansha area, southern South China Sea. Detailed investigations of coral reef ecology, geomorphology and sedimentation on Yongshu Reef indicate that such storm-relocated blocks originated from large Porites lutea corals growing on the spurs within the reef-front living coral zone. Because the coral reef has experienced sustained subsidence and reef development during the Holocene, dead corals were continuously covered by newly growing coral colonies. For this reason, the coral blocks must have been relocated by storms from the living sites and therefore the ages of these storm-relocated corals should approximate the times when the storms occurred. Rapid emplacement of these blocks is also evidenced by the lack of coral overgrowth, encrustation or subtidal alteration. U-series dating of the storm-relocated blocks as well as of in situ reef flat corals suggests that, during the last 1000 years, at least six strong storms occurred in 1064 +/- 30, 1210 +/- 5-1201 +/- 4, 1336 +/- 9, 1443 +/- 9, 1685 +/- 8-1680 +/- 6, 1872 +/- 15 AD, respectively, with an average 160-year cycle (110-240 years). The last storm, which occurred in 1872 15 AD, also led to mortality of the reef flat corals dated at similar to 130 years ago. Thus, the storm had significant impacts on coral reef ecology and morphology. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The age structure and, stable isotope composition of a stalagmite (CC I) from an upland cave in central-western Italy were studied to investigate regional response to global climatic changes. Four growth phases are constrained by 28 thermal ionization and multi-collector inductively coupled plasma mass spectrometry Th-U ages and reveal intermittent deposition through the period between Marine isotope Stage (MIS) 11 and 3 (similar to380 and similar to43 kyr). Most of the growth took place between similar to380 and similar to280 kyr, a period punctuated briefly by a hiatus in deposition through the glacial maximum of MIS 10. Growth was terminated abruptly at 280 kyr just prior to the MIS 8 glacial maximum. With a present-day chamber temperature of 7.5 degreesC, the timing of hiatuses close to these glacial maxima point to freezing conditions at the time. No deposition was recorded through the entirety of MIS 7 and most of MIS 6, whilst two minor growth phases occurred at similar to141-125 and similar to43 kyr. Growth at 141 kyr indicates temperatures >0 degreesC at a time when MIS 6 ice volumes were close to their maximum. High stable carbon isotope (delta(13)C) values (similar to2.8parts per thousand to +3.1parts per thousand) throughout the stalagmite's growth reflect a persistently low input of biogenic CO2, indicating that the steep, barren and alpine-like recharge area of today ha's been in existence for at least the last similar to380 kyr. During MIS 9, the lowest delta(13)C values occur well after maximum interglacial conditions, suggesting a lag in the development of post-glacial soils in this high-altitude karst. The stable oxygen isotope (delta(18)O) trends match the main structural features of the major climate proxy records (SPECMAP, Vostok and Devils Hole), suggesting that the delta(18)O of CC1 has responded to global-scale climate changes, whilst remarkable similarity exists between CC1 delta(18)O and regional sea-surface temperature reconstructions from North Atlantic core ODP980 and southwest Pacific marine core MD97-2120 through the most detailed part of the CC1 record, MIS 9-8. The results suggest that CC1 and other stalagmites from the cave have the potential to capture a long record of regional temperature trends, particularly in regards to the relative severity of Pleistocene glacial stages. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Climatic and oceanographic changes, as occurring at a glacial-interglacial scale, may alter the environmental conditions needed for the development of prolific cold-water coral reefs and mounds. Studies constraining the temporal distribution of cold-water corals in the NE Atlantic suggested the cyclic changes of the Atlantic Meridional Overturning Circulation as the main driver for the development and dispersal of cold-water coral ecosystems. However, conclusions were hindered by lack of data from the NW Atlantic. Aiming to overcome this lack of data, the temporal occurrence of cold-water corals in the Cape Lookout area along the southeastern US margin was explored by U-series dating. Furthermore, the local influence of the regional water masses, namely the Gulf Stream, on cold-water coral proliferation and occurrence since the Last Glacial Maximum was examined. Results suggest that the occurrence of cold-water corals in the Cape Lookout area is restricted to interglacial periods, with corals being present during the last ~7 kyr and also during the Eemian (~125 ka). The reconstructed local environmental conditions suggest an offshore displacement of the Gulf Stream and increased influence from the Mid-Atlantic Bight shelf waters during the last glacial period. During the deglacial sea level rise, the Gulf Stream moved coastward providing present-day-like conditions to the surface waters. Nevertheless, present-day conditions at the ocean sea floor were not established before 7.5 cal ka BP once the ultimate demise of the Laurentide ice-sheet caused the final sea level rise and the displacement of the Gulf Stream to its present location. Occasional presence of the Gulf Stream over the site during the Mid- to Late Holocene coincides with enhanced bottom current strength and a slightly higher bottom water temperature, which are environmental conditions that are favorable for cold-water coral growth.
Resumo:
The data on the isotope compositions of rubidium, strontium and oxygen in the pumice of Okinawa Trough are reported for the first time. The ages of the pumice were successfully dated with the method of U-series disequilibrium. Then, the material source, crystallization evolution of magma and activity cycles of volcanos are explored. Isotopic data show that pumice magma was originally from the mantle, but had undergone a full crystallization differentiation and had been contaminated to a fair extent by crust-derived materials before the magma was erupted out of the sea floor. According to the dating results available so far, the earliest volcanic eruption in Okinawa Trough occurred about 70,000 a ago and the latest eruption was about 10,000 a B.P. During this period, there were three volcanic eruption cycles which were respectively corresponding to the middle Late Pleistocene, the late Late Pleistocene and the Early Holocene.