956 resultados para U-addition RNA editing
Resumo:
The pufferfish Fugu rubripes has a genome ≈7.5 times smaller than that of mammals but with a similar number of genes. Although conserved synteny has been demonstrated between pufferfish and mammals across some regions of the genome, there is some controversy as to what extent Fugu will be a useful model for the human genome, e.g., [Gilley, J., Armes, N. & Fried, M. (1997) Nature (London) 385, 305–306]. We report extensive conservation of synteny between a 1.5-Mb region of human chromosome 11 and <100 kb of the Fugu genome in three overlapping cosmids. Our findings support the idea that the majority of DNA in the region of human chromosome 11p13 is intergenic. Comparative analysis of three unrelated genes with quite different roles, WT1, RCN1, and PAX6, has revealed differences in their structural evolution. Whereas the human WT1 gene can generate 16 protein isoforms via a combination of alternative splicing, RNA editing, and alternative start site usage, our data predict that Fugu WT1 is capable of generating only two isoforms. This raises the question of the extent to which the evolution of WT1 isoforms is related to the evolution of the mammalian genitourinary system. In addition, this region of the Fugu genome shows a much greater overall compaction than usual but with significant noncoding homology observed at the PAX6 locus, implying that comparative genomics has identified regulatory elements associated with this gene.
Resumo:
Adenosine deaminases that act on RNA (ADARs) are RNA-editing enzymes that convert adenosine to inosine within double-stranded RNA. In the 12 years since the discovery of ADARs only a few natural substrates have been identified. These substrates were found by chance, when genomically encoded adenosines were identified as guanosines in cDNAs. To advance our understanding of the biological roles of ADARs, we developed a method for systematically identifying ADAR substrates. In our first application of the method, we identified five additional substrates in Caenorhabditis elegans. Four of those substrates are mRNAs edited in untranslated regions, and one is a noncoding RNA edited throughout its length. The edited regions are predicted to form long hairpin structures, and one of the RNAs encodes POP-1, a protein involved in cell fate decisions.
Resumo:
RNA editing by adenosine deamination in brain-expressed pre-mRNAs for glutamate receptor (GluR) subunits alters gene-specified codons for functionally critical positions, such as the channel's Q/R site. We show by transcript analysis of minigenes transiently expressed in PC-12 cells that, in contrast to GluR-B pre-mRNA, where the two editing sites (Q/R and R/G) require base pairing with nearby intronic editing site complementary sequences (ECSs), editing in GluR5 and GluR6 pre-mRNAs recruits an ECS located as far as 1900 nucleotides distal to the Q/R site. The exon-intron duplex structure of the GluR5 and GluR6 pre-mRNAs appears to be a substrate of double-stranded RNA-specific adenosine deaminase. This enzyme when coexpressed in HEK 293 cells preferentially targets the adenosine of the Q/R site and of an unpaired position in the ECS which is highly edited in brain.
Resumo:
A M(r) 140,000 protein has been purified from chicken lungs to apparent homogeneity. The protein binds with high affinity to a non-BNA conformation, which is most likely to the Z-DNA. The protein also has a binding site for double-stranded RNA (dsRNA). Peptide sequences from this protein show similarity to dsRNA adenosine deaminase, an enzyme that deaminates adenosine in dsRNA to form inosine. Assays for this enzyme confirm that dsRNA adenosine deaminase activity and Z-DNA binding are properties of the same molecule. The coupling of these two activities in a single molecule may indicate a distinctive mechanism of gene regulation that is, in part, dependent on DNA topology. As such, DNA topology, through its effects on the efficiency and extent of RNA editing may be important in the generation of new phenotypes during evolution.
Resumo:
Migraine is a common genetically linked neurovascular disorder. Approximately ~12% of the Caucasian population are affected including 18% of adult women and 6% of adult men (1, 2). A notable female bias is observed in migraine prevalence studies with females affected ~3 times more than males and is credited to differences in hormone levels arising from reproductive achievements. Migraine is extremely debilitating with wide-ranging socioeconomic impact significantly affecting people's health and quality of life. A number of neurotransmitter systems have been implicated in migraine, the most studied include the serotonergic and dopaminergic systems. Extensive genetic research has been carried out to identify genetic variants that may alter the activity of a number of genes involved in synthesis and transport of neurotransmitters of these systems. The biology of the Glutamatergic system in migraine is the least studied however there is mounting evidence that its constituents could contribute to migraine. The discovery of antagonists that selectively block glutamate receptors has enabled studies on the physiologic role of glutamate, on one hand, and opened new perspectives pertaining to the potential therapeutic applications of glutamate receptor antagonists in diverse neurologic diseases. In this brief review, we discuss the biology of the Glutamatergic system in migraine outlining recent findings that support a role for altered Glutamatergic neurotransmission from biochemical and genetic studies in the manifestation of migraine and the implications of this on migraine treatment.
Resumo:
Background: Migraine causes crippling attacks of severe head pain along with associated nausea, vomiting, photophobia and/or phonophobia. The aim of this study was to investigate single nucleotide polymorphisms (SNPs) in the adenosine deaminase, RNA-specific, B1 (ADARB1)and adenosine deaminase, RNA specific, B2 (ADARB2) genes in an Australian case-control Caucasian population for association with migraine. Both candidate genes are highly expressed in the central nervous system (CNS) and fit criteria for migraine neuropathology. SNPs in the ADARB2 gene were previously found to be positively associated with migraine in a pedigree-based GWAS using the genetic isolate of Norfolk Island, Australia. The ADARB1 gene was also chosen for investigation due to its important function in editing neurotransmitter receptor transcripts. Methods: Four SNPs in ADARB1 and nine in ADARB2 were selected by inspecting blocks of LD in Haploview for genotyping using either TaqMan or Sequenom assays. These SNPs were genotyped in two-hundred and ninety one patients who satisfied the International Classification of Headache Disorders, ICHD-II 2004 diagnostic criteria for migraine and three-hundred and fourteen controls and PLINK was used for association testing. Results: Chi-square (χ2) analysis found no significant association between any of the SNPs tested in the ADARB1 and ADARB2 genes in this study and the occurrence of migraine. Conclusions: In contrast to findings that SNPs in the ADARB2 gene were positively associated with migraine in the Norfolk Island population, we find no evidence to support the involvement of RNA editing genes in migraine susceptibility in an Australian Caucasian population.
Resumo:
We present the complete mitochondrial genome (accession number: LK995454) of an iconic Australian species, the eastern grey kangaroo (Macropus giganteus). The mitogenomic organization is consistent with other marsupials, encoding 13 protein-coding genes, 22 tRNA genes, 2 ribosomal RNA genes, an origin of light strand replication and a control region or Dloop. No repetitive sequences were detected in the control region. The M. giganteus mitogenome exemplifies a combination of tRNA gene order and structural peculiarities that appear to be unique to marsupials. We present a maximum likelihood phylogeny based on complete mitochondrial protein and RNA coding sequences that confirms the phylogenetic position of the grey kangaroo among macropodids.
Resumo:
In study of gene expression profile in cloned embryos which derived from D. rerio embryonic nuclei and G. rarus enucleated eggs, cytochrome c oxidase subunit I (COXI) of G. rarus, exhibiting difference at expression level between cloned embryos and zebrafish embryo, was cloned. Its full cDNA length is 1654 bp and contains a 1551 bp open reading frame, encoding a 5.64 kDa protein of 516 amino acids. The alignment result shows that mitochondrion tRNA(ser) is co-transcripted with COXI, which just was the 3'-UTR of COXI. Molecular phylogenic analysis based on COXI indicates G. rarus should belong to Gobioninae, which was not in agreement with previous study according to morphological taxonomy. Comparison of DNA with cDNA shows that RNA editing phenomenon does not occur in the COXI of G. rarus.
Resumo:
The zinc-finger protein Rotund (Rn) plays a critical role in controlling the development of the fly olfactory system. However, little is known about its molecular function in vivo. Here, we added protein tags to the rn locus using CRISPR-Cas9 technology in Drosophila to investigate its subcellular localization and the genes that it regulates . We previously used a reporter construct to show that rn is expressed in a subset of olfactory receptor neuron (ORN) precursors and it is required for the diversification of ORN fates. Here, we show that tagged endogenous Rn protein is functional based on the analysis of ORN phenotypes. Using this method, we also mapped the expression pattern of the endogenous isoform-specific tags in vivo with increased precision. Comparison of the Rn expression pattern from this study with previously published results using GAL4 reporters showed that Rn is mainly present in early steps in antennal disc patterning, but not in pupal stages when ORNs are born. Finally, using chromatin immunoprecipitation, we showed a direct binding of Rotund to a previously identified regulatory element upstream of the bric-a-brac gene locus in the developing antennal disc.
Resumo:
The aim of this study was to characterize the transcriptome of a balanced polymorphism, under the regulation of a single gene, for phosphate fertilizer responsiveness/arsenate toler- ance in wild grass Holcus lanatus genotypes screened from the same habitat.
De novo transcriptome sequencing, RNAseq (RNA sequencing) and single nucleotide poly- morphism (SNP) calling were conducted on RNA extracted from H.lanatus. Roche 454 sequencing data were assembled into c. 22 000 isotigs, and paired-end Illumina reads for phosphorus-starved (P) and phosphorus-treated (P+) genovars of tolerant (T) and nontoler- ant (N) phenotypes were mapped to this reference transcriptome.
Heatmaps of the gene expression data showed strong clustering of each P+/P treated genovar, as well as clustering by N/T phenotype. Statistical analysis identified 87 isotigs to be significantly differentially expressed between N and T phenotypes and 258 between P+ and P treated plants. SNPs and transcript expression that systematically differed between N and T phenotypes had regulatory function, namely proteases, kinases and ribonuclear RNA- binding protein and transposable elements.
A single gene for arsenate tolerance led to distinct phenotype transcriptomes and SNP pro- files, with large differences in upstream post-translational and post-transcriptional regulatory genes rather than in genes directly involved in P nutrition transport and metabolism per se.
Resumo:
The univocal correspondence between one gene and one polypeptide has been challenged by many examples of ambiguities. A rapidly expanding list of one-to-many or many-to-one correspondences includes: genomic rearrangements, alternative processing of transcripts, overlapping translation frames, RNA editing, alternative translation modes, and polyprotein cleavage.The genomic message requires interpretation through decoding by a sophisticated information retrieval system which should also carry some kind of information. The full meaning of the whole cell, as a unit, is emphasized.The gene is a combination of (one or more) nucleic acid (DNA or RNA) sequences, defined by the system (the whole cell, interacting with the environment, or the environment alone, in subcellular or pre-cellular systems), that gives origin to a product (RNA or polypeptide).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) and thereby potentially alter the information content and structure of cellular RNAs. Notably, although the overwhelming majority of such editing events occur in transcripts derived from Alu repeat elements, the biological function of non-coding RNA editing remains uncertain. Here, we show that mutations in ADAR1 (also known as ADAR) cause the autoimmune disorder Aicardi-Goutieres syndrome (AGS). As in Adar1-null mice, the human disease state is associated with upregulation of interferon-stimulated genes, indicating a possible role for ADAR1 as a suppressor of type I interferon signaling. Considering recent insights derived from the study of other AGS-related proteins, we speculate that ADAR1 may limit the cytoplasmic accumulation of the dsRNA generated from genomic repetitive elements.
Resumo:
Abstract Background The mitochondrial DNA of kinetoplastid flagellates is distinctive in the eukaryotic world due to its massive size, complex form and large sequence content. Comprised of catenated maxicircles that contain rRNA and protein-coding genes and thousands of heterogeneous minicircles encoding small guide RNAs, the kinetoplast network has evolved along with an extreme form of mRNA processing in the form of uridine insertion and deletion RNA editing. Many maxicircle-encoded mRNAs cannot be translated without this post-transcriptional sequence modification. Results We present the complete sequence and annotation of the Trypanosoma cruzi maxicircles for the CL Brener and Esmeraldo strains. Gene order is syntenic with Trypanosoma brucei and Leishmania tarentolae maxicircles. The non-coding components have strain-specific repetitive regions and a variable region that is unique for each strain with the exception of a conserved sequence element that may serve as an origin of replication, but shows no sequence identity with L. tarentolae or T. brucei. Alternative assemblies of the variable region demonstrate intra-strain heterogeneity of the maxicircle population. The extent of mRNA editing required for particular genes approximates that seen in T. brucei. Extensively edited genes were more divergent among the genera than non-edited and rRNA genes. Esmeraldo contains a unique 236-bp deletion that removes the 5'-ends of ND4 and CR4 and the intergenic region. Esmeraldo shows additional insertions and deletions outside of areas edited in other species in ND5, MURF1, and MURF2, while CL Brener has a distinct insertion in MURF2. Conclusion The CL Brener and Esmeraldo maxicircles represent two of three previously defined maxicircle clades and promise utility as taxonomic markers. Restoration of the disrupted reading frames might be accomplished by strain-specific RNA editing. Elements in the non-coding region may be important for replication, transcription, and anchoring of the maxicircle within the kinetoplast network.
Resumo:
Expression of the Na$\sp+$/glucose cotransporter (SGLT1), a differentiated function of the pig kidney epithelial cell line LLC-PK$\sb1$ derived from proximal tubule, was further investigated. The differentiation inducer hexamethylene bisacetamide (HMBA) and IBMX, an inhibitor of cAMP phosphodiesterase, each stimulated a significant increase in Na$\sp+$/glucose cotransport activity, levels of the 75 kD cotransporter subunit and steady-state levels of the SGLT1 message. The action of HMBA is associated with involvement of polyamines and protein kinase C, and is synergistic with cAMP. We provide evidence that cAMP-elevating agents increase Na$\sp+$/glucose cotransporter expression, at least in part, via a post-transcriptional mechanism. Two molecular species of SGLT1 mRNA (3.9 kb and 2.2 kb) are transcribed from the same gene in LLC-PK$\sb1$ cells and differ only in the length of the 3$\sp\prime$ untranslated region (3$\sp\prime$ UTR). cAMP elevation differentially stabilized the 3.9 kb SGLT1 transcript from degradation but not the 22 kb species. UV-cross-linking and label transfer experiments indicated that cyclic AMP elevation was associated with formation of a 48 kD protein complex with a specific domain within the 3$\sp\prime$ UTR of SGLT1 mRNA. The binding was competitively inhibited by poly (U) and other U-rich RNA species such as c-fos ARE, and modulated by a protein kinase A-mediated phosphorylation/dephosphorylation mechanism. The binding site was mapped to a 120-nucleotide 3$\sp\prime$ UTR sequence which contains a uridine-rich region (URE). Our study provides the first demonstration that renal SGLT1 is post-transcriptionally regulated by a phosphorylation/dephosphorylation mechanism, and provides a deeper insight into gene regulation of this physiologically important cotransporter. ^