974 resultados para Turbidity currents.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study of sediments from the Cap Timiris Canyon demonstrates that geochemical data can provide reliable age-depth correlation even of highly turbiditic cores and attempts to improve our understanding of how turbidite emplacement is linked to climatic-related sea-level changes. The canyon incises the continental margin off NW Africa and is an active conduit for turbidity currents. In sediment cores from levee and intrachannel sites turbidites make up 6-42% of sediment columns. Age models were fitted to all studied cores by correlating downcore element data to dated reference cores, once turbidite beds had been removed from the dataset. These age models enabled us to determine turbidite emplacement times. The Cap Timiris Canyon has been active at least over the last 245 kyr, with turbidite deposition seemingly linked to stage boundaries and glacial stages. The highly turbiditic core from the intrachannel site postdates to ~15 kyr and comprises Holocene and late Pleistocene sediments. Turbidite deposition at this site was associated especially with the rapid sea-level rise at the Pleistocene/Holocene transition. During the Holocene, turbidity current activity decreased but did not cease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bentonites (i.e., smectite-dominated, altered volcanic ash layers) were discovered in Berriasian to Valanginian hemipelagic (shelfal) to eupelagic (deep-sea) sediments of the Wombat Plateau (Site 761), Argo Abyssal Plain (Sites 261, 765), southern Exmouth Plateau (Site 763), and Gascoyne Abyssal Plain (Site 766). A volcaniclastic origin with trachyandesitic to rhyolitic ash as parent material is proved by the abundance of well-ordered montmorillonite, fresh to altered silicic glass shards, volcanogenic minerals (euhedral sanidine, apatite, slender zircon), and rock fragments, and by a vitroclastic ultra-fabric (smectitized glass shards). For the Argo Abyssal Plain, we can distinguish four types of bentonitic claystones of characteristic waxy appearance: (1) pure smectite bentonites, white to light gray, sharp basal contacts, and a homogeneous cryptocrystalline smectite matrix, (2) thin, greenish-gray bentonitic claystones having sharp upper and lower contacts, (3) gray-green bentonitic claystones mottled with background sedimentation and a distinct amount of terrigenous and pelagic detrital material, and (4) brick-red smectitic claystones having diffuse sedimentary contacts and a doubtful volcanic origin. For the other drill sites, we can distinguish between (1) pure bentonitic claystones similar in appearance and chemical composition to Type 1 of the Argo Abyssal Plain (except for gradual basal contacts) and (2) impure bentonitic claystones containing textures of volcanogenic smectite and pyroclastic grains with terrigenous and pelagic components resulting from resedimentation or bioturbation. The ash layers were progressively altered (smectitized) during diagenesis. Silicic glass was first hydrated, then slightly altered (etched with incipient smectite authigenesis), then moderately smectitized (with shard shape still intact), and finally, completely homogenized to a pure smectite matrix without obvious relict structures. Volcanic activity was associated with continental breakup and rapid subsidence during the "juvenile ocean phase." Potential source areas for a Neocomian post-breakup volcanism include Wombat Plateau, Joey and Roo rises, Scott Plateau, and Wallaby Plateau/Cape Range Fracture Zone. Westward-directed trade winds transported silicic ash from these volcanic source areas to the Exmouth Plateau and, via turbidity currents, into the adjacent abyssal plains. The Wombat and Argo abyssal plain bentonites are interpreted, at least in parts, as proximal or distal ash turbidites, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relationship of sea-level changes and short-term climatic changes with turbidite deposition is poorly documented, although the mechanisms of gravity-driven sediment transport in submarine canyons during sea-level changes have been reported from many regions. This study focuses on the activity of the Dakar Canyon off southern Senegal in response to major glacial/interglacial sea-level shifts and variability in the NW-African continental climate. The sedimentary record from the canyon allows us to determine the timing of turbidite events and, on the basis of XRF-scanning element data, we have identified the climate signal at a sub-millennial time scale from the surrounding hemipelagic sediments. Over the late Quaternary the highest frequency in turbidite activity in the Dakar Canyon is confined to major climatic terminations when remobilisation of sediments from the shelf was triggered by the eustatic sea-level rise. However, episodic turbidite events coincide with the timing of Heinrich events in the North Atlantic. During these times continental climate has changed rapidly, with evidence for higher dust supply over NW Africa which has fed turbidity currents. Increased aridity and enhanced wind strength in the southern Saharan-Sahelian zone may have provided a source for this dust.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of glaciation on sediment drifts is recognised from marked sedimentary facies variation in deep sea cores taken from the continental rise of the Antarctic Peninsula Pacific margin. Nineteen sediment cores were visually described, logged for magnetic susceptibility, and X-radiographed. About 1000 analyses were performed for grain size, clay minerals and biostratigraphy (foraminifera, nannofossils and diatoms). Four sediment types associated with distinct sedimentary processes are recognised based on textural/compositional analysis. (1) Hemipelagic mud forms the bulk of the interglacial sediment, and accumulated from the pelagic settling of bioclasts and ice-rafted/windtransported detritus. (2) Terrigenous mud forms the bulk of the glacial sediment, and accumulated from a combination of sedimentary processes including turbidity currents, turbid plumes, and bottom current reworking of nepheloid layers. (3) Silty deposits occurring as laminated layers and lenses, represent the lateral spillout of lowdensity turbidity currents. (4) Lastly, glacial/interglacial gravelly mud layers derive from settling of ice-rafted detritus. Five depositional settings are interpreted within sediment Drift 7, each characterised by the dominance/interaction of one or several depositional processes. The repetitive succession of typical sedimentary facies is inferred to reflect a sequence of four climatic stages (glaciation, glacial, deglaciation, and interglacial), each one characterised by a distinctive clay mineral assemblage and bioclastic content. Variations in clay mineral assemblage within interglacial stage 5 (core SED-06) suggest minor colder climatic fluctuations, possibly correlatable with substages 5a to 5e.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on a high-resolution sediment record from a submarine meandering canyon system offshore the present-day hyperarid Saharan Africa, two phases of turbidity-current activity can be distinguished during the past 13,000 years. Frequent, siliciclastic turbidity currents can be related to deglacial sea-level history, whereas rhythmically recurring fine-grained and carbonate-rich turbidity currents with recurrence times of roughly 900 years are inferred for the Holocene. Various trigger mechanisms can be considered to initiate turbidity currents, but only a few can explain a periodic turbidite activity. A comparison of Holocene turbidite recurrence times and basic cycles of 900 and 1,800 years found in various Holocene paleoclimate studies suggests that a previously unrecognized climate-related coupling may be active.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Textural and compositional differences were found between gravity-flow sheets in an open-ocean environment on the northern slope of Little Bahama Bank (Site 628, Pliocene turbidite sequence) and in a closed-basin depositional setting (Site 632, Quaternary turbidite sequence). Mud-supported debris-flow sheets were cored at Site 628. Average mean grain size of the turbidite samples was lower, mud content was higher, and sorting was poorer than in comparable samples from Site 632. This reflects the deposition of proximal, low-energy turbidity currents and debris flows on a base-ofslope carbonate apron. No mud-supported debris-flow sheets were deposited in the investigated sediment sequence of Hole 632A. Many larger turbidity currents from around the margins of Exuma Sound may have reached this central basin setting, depositing sediments that had been transported over longer distances. Planktonic components dominate in the grain-sized fraction (500-1000 µm) of turbidite samples from Hole 628A, while platform detritus is rare. We interpreted this as resulting from the erosion and reworking of a large area of open-ocean slope sediments by gravity flows. In contrast, large amounts of benthic and platform components were found in the turbidite samples of Hole 632A. This may be explained by the fact that the slopes of the enclosed Exuma Sound are steep, and turbidity currents bypassed much of these slopes through pronounced channels, delivering more shallow-water detritus to the deep basin. Erosion of slope sediments, a possible source area of planktonic detritus, is assumed to be low. The small slope area in relation to the larger surrounding platform areas and lower production of planktonic components in the enclosed waters of Exuma Sound may also explain the observed low number of planktonic components at Hole 632A. Turbidite material from both open-ocean and enclosed-basin environments was deposited at Site 635.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well established that orbital scale sea-level changes generated larger transport of sediments into the deep-sea during the last glacial maximum than the Holocene. However, the response of sedimentary processes to abrupt millennial-scale climate variability is rather unknown. Frequency of distal turbidites and amounts of advected detrital carbonate are estimated off the Lisbon-Setúbal canyons, within a chronostratigraphy based on radiometric ages, oxygen isotopes and paleomagnetic key global anomalies. We found that: 1) Higher frequency of turbidites concurred with Northern Hemisphere coldest temperatures (Greenland Stadials [GS], including Heinrich [H] events). But more than that, an escalating frequency of turbidites starts with the onset of global sea-level rising (and warming in Antarctica) and culminates during H events, at the time when rising is still in its early-mid stage, and the Atlantic Meridional Overturning Circulation (AMOC) is re-starting. This short time span coincides with maximum gradients of ocean surface and bottom temperatures between GS and Antarctic warmings (Antarctic Isotope Maximum; AIM 17, 14, 12, 8, 4, 2) and rapid sea-level rises. 2) Trigger of turbidity currents is not the only sedimentary process responding to millennial variability; land-detrital carbonate (with a very negative bulk d18O signature) enters the deep-sea by density-driven slope lateral advection, accordingly during GS. 3) Possible mechanisms to create slope instability on the Portuguese continental margin are sea-level variations as small as 20 m, and slope friction by rapid deep and intermediate re-accommodation of water masses circulation. 4) Common forcing mechanisms appear to drive slope instability at both millennial and orbital scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sequences of late Pliocene to Holocene sediment lap onto juvenile igneous crust within 20 km of the Juan de Fuca Ridge in northwestern Cascadia Basin, Pacific Ocean. The detrital modes of turbidite sands do not vary significantly within or among sites drilled during Leg 168 of the Ocean Drilling Program. Average values of total quartz, total feldspar, and unstable lithic fragments are Q = 35, F = 35, and L = 30. Average values of monocrystalline quartz, plagioclase, and K-feldspar are Qm = 46, P = 49, and K = 5, and the average detrital modes of polycrystalline quartz, volcanic-rock fragments, and sedimentary-rock plus metamorphic-rock fragments are Qp = 16, Lv = 43, and Lsm = 41. Likely source areas include the Olympic Peninsula and Vancouver Island; sediment transport was focused primarily through the Strait of Juan de Fuca, Juan de Fuca Channel, Vancouver Valley, and Nitinat Valley. Relative abundance of clay minerals (<2-µm-size fraction) fluctuate erratically with depth, stratigraphic age, and sediment type (mud vs. turbidite matrix). Mineral abundance in mud samples are 0%-35% smectite (mean = 8%), 18%-59% illite (mean = 40%), and 29%-78% chlorite + kaolinite (mean = 52%). We attribute the relatively low content of smectite to rapid mechanical weathering of polymictic source terrains, with little or no input of volcanic detritus from the Columbia River. The scatter in clay mineralogy probably was caused by converging of surface currents, turbidity currents, and near-bottom nepheloid clouds from several directions, as well as subtle changes in glacial vs. interglacial weathering products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leg 87 investigated two sites in the Nankai Trough, off southeastern Japan, and one in the Japan Trench, off northeastern Japan. Several holes at the Nankai Trough sites penetrated mostly Quaternary interbedded sandy turbidites and hemipelagic mud. Foraminifers are common only in certain turbidite sands because both sites are at or just below the carbonate compensation depth. The planktonic assemblages from these sandy layers consist of mixed cool-temperate and warm-water species, and include both solution-resistant and solution-prone species. The benthic assemblages from these same layers are composed of mixtures of shelf to abyssal species. The northward-flowing Kuroshio is important in producing the mixed planktonic faunas, whereas turbidity currents are the primary agents in mixing benthic faunas and in the rapid burial of both planktonic and benthic foraminifers, which protects them from solution. Interbedded hemipelagic muds are barren or contain sparse faunas. Hole 582B penetrated through the trench-fill deposits into hemipelagic sediments that originated in the Shikoku Basin. These muds contain a dissolution facies of solution-resistant planktonic species, partially dissolved tests, and deep bathyal benthic species. Drilling at Site 584, on the landward midslope of the Japan Trench, penetrated a section of dominantly diatomaceous mudstone. This section contains a meager Pliocene calcareous fauna in its upper third and a nearly monospecific assemblage of Martinottiella communis in the lower two-thirds. Diatom biostratigraphy indicates that this change in assemblages occurs near the Miocene/Pliocene boundary. Similar biofacies changes are observed in neighboring sections drilled during Legs 56 and 57. The change from agglutinated to calcareous faunas is probably related to a relative drop in the carbonate compensation depth at the end of the Miocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The late Cenozoic deposits recovered at ODP Site 637 from the Iberian Abyssal Plain near the continental margin off northwestern Spain include three main facies groups. Turbidites are the dominant facies association (two-thirds of the total thickness), followed by pelagites (one-fourth), and subordinate amounts of contourites (one-tenth). Slump deposits occur locally in the upper Miocene and middle Pliocene. Turbidity currents and pelagic settling were the significant sediment depositional processes from the Pliocene to the Pleistocene, whereas bottom currents predominated during the late Miocene. Fine-grained, base-cut-out turbidites, normally starting with the Td division, are the most abundant sequence type. The pelagites include both carbonate-rich pelagic and hemipelagic facies. The two types of contourites, sandy and calcareous-rich or fine-grained terrigenous, record two types of bottom-current processes. The Cenozoic deposits at Site 637 show a general upward transition from contourites in the upper Miocene to turbidites in the Pliocene-Quaternary. The entire section is rhythmically bedded and has a poorly developed cyclic pattern defined by variations in the total carbonate content. The low sedimentation rates also show the same cyclicity, with lower values for the late Miocene and late Pliocene. This evolution reflects the predominant depositional processes and the dissolution of carbonates by a lower CCD during the late Miocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Early Pliocene to Pleistocene volcaniclastic sediments recovered during Ocean Drilling Program Leg 135 from Sites 834 to 839 in the Lau Basin show a wide range of chemical and mineralogical compositions extending the spectrum previously known from the Lau Basin, Lau Ridge and Tofua Arc. The following major types of volcaniclastics have been distinguished: (1) primary fallout ashes originating from eruptions on land, (2) epiclastic deposits that resulted from subaerial and submarine eruptions, (3) subaqueous fallout and pyroclastic flow deposits resulting from explosive submarine eruptions, and (4) hyaloclastites resulting from mechanical fragmentation and spalling of chilled margins of submarine pillow tubes and sheet-lava flows. Vitric shards are mostly basaltic andesitic to rhyolitic and broadly follow two major trends in terms of K2O enrichment: a low-K series (LKS) with about 1 wt% K2O at 70 wt% SiO2, and a very low-K series (VLKS) with only about 0.5 wt% K2O at 70 wt% SiO2. Sites 834 and 835 on "old" backarc basin crust, >4.2 and 3.4 m.y. old, comprise LKS rhyolites >3.3 m.y. old. Calc-alkaline basaltic turbidites originating from the Lau Ridge flowed in at 3.3 Ma. In the period from 3.3 to 2.4 Ma basaltic andesitic to rhyolitic, fine-grained LKS and VLKS volcaniclastics were deposited by turbidity currents and subaerial fallout. Three thin, discrete fallout layers (2.4-3.2 m.y. old) with high-K calc-alkaline compositions probably erupted in New Zealand. Volcaniclastics from Site 836, all <0.6 m.y. old, make up 24% of the sediments and comprise local basaltic andesitic to andesitic hyaloclastites with low Ba/Zr ratios of 0.9 to 1.4 and polymict andesitic sediments with Ba/Zr ratios of up to 5.5, containing clasts altered to lower greenschist facies. In Sites 837-839, drilled on young crust (1.8-2.1 m.y. old), volcaniclastics make up 45%-64% of the total sediment. Glass compositions are often bimodal with a mafic and a rhyolitic population. Large-volume rhyolitic, silt- to lapilli-sized volcaniclastics are interpreted as pyroclastic flows from explosive eruptions on a seamount 25-50 km away from the sites. Ba/Zr ratios are 2 to 4, partially overlapping with some Lau Basin basement lavas that show an "arc" signature, and they can reach values >5 in thin volcaniclastic layers <0.6 m.y. old.