364 resultados para Trypanothione synthetase
Resumo:
Bj-BPP-10c is a bioactive proline-rich decapeptide, part of the C-type natriuretic peptide precursor, expressed in the brain and in the venom gland of Bothrops jararaca. We recently showed that Bj-BPP-10c displays a strong, sustained anti-hypertensive effect in spontaneous hypertensive rats (SHR), without causing any effect in normotensive rats, by a pharmacological effect independent of angiotensin-converting enzyme inhibition. Therefore, we hypothesized that another mechanism should be involved in the peptide activity. Here we used affinity chromatography to search for kidney cytosolic proteins with affinity for Bj-BPP-10c and demonstrate that argininosuccinate synthetase (AsS) is the major protein binding to the peptide. More importantly, this interaction activates the catalytic activity of AsS in a dose-dependent manner. AsS is recognized as an important player of the citrulline-NO cycle that represents a potential limiting step in NO synthesis. Accordingly, the functional interaction of Bj-BPP-10c and AsS was evidenced by the following effects promoted by the peptide: (i) increase of NO metabolite production in human umbilical vein endothelial cell culture and of arginine in human embryonic kidney cells and (ii) increase of arginine plasma concentration in SHR. Moreover, alpha-methyl-DL-aspartic acid, a specific AsS inhibitor, significantly reduced the anti-hypertensive activity of Bj-BPP-10c in SHR. Taken together, these results suggest that AsS plays a role in the anti-hypertensive action of Bj-BPP-10c. Therefore, we propose the activation of AsS as a new mechanism for the anti-hypertensive effect of Bj-BPP-10c in SHR and AsS as a novel target for the therapy of hypertension-related diseases.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
To explore three possible binding sites of trypanothione and glutathione reductase, namely, the active, the dimer interface and the coenzyme NADPH binding site, a series of eight compounds, nitrofurans and nitrothiophenes derivatives, were docked, using their crystallographic and modeled conformations. Docking results showed that, for both families and both enzymes, compounds are more likely to bind in the interface site, even though there is some probability of binding in the active site. These studies are in agreement with experimental data, which suggest that these class of compounds can act either as uncompetitive or mixed type inhibitors, and also with the finding that there is an alpha-helix which connects the active with the interface site, thus allowing charge transference between them. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Experiments were performed to (1) verify the inhibitory effect of bovine trophoblast protein-1 (bTP-1) on uterine prostaglandin synthesis, (2) evaluate whether other interferon-alpha (IFN-alpha) molecules also inhibit prostaglandin secretion, and (3) test whether the enzyme 2',5'-oligoadenylate synthetase (2-5A synthetase) can be induced in endometrium by interferon-alpha. In experiment 1, all interferon molecules (bTP-1, oTP-1, bIFN-alpha and hIFN-alpha) equally inhibited secretion of PGF and PGE2 from endometrial explant cultures obtained at day 17 of the estrous cycle. In experiment 2, endometrial explants obtained from day 17 of the cycle were cultured with and without bovine serum albumin (BSA; 50-mu-g/ml) and bIFN-alpha (0, 0.84, 4.2, and 42 nM). Addition of BSA to the culture medium greatly enhanced the accumulation of PGF into the medium. The bIFN-alpha inhibited accumulation of PGF and PGE2 in both the presence or absence of BSA by 12 h. All three concentrations of bIFN-alpha were equally effective in inhibiting prostaglandin accumulation. Additionally, all concentrations of bIFN-alpha increased the amounts of 2-5A synthetase in endometrium. In conclusion, these results confirm the inhibitory effect of bTP-1 on PGF release from endometrium and demonstrate that bTP-1 can also inhibit PGE2 secretion. Furthermore, other interferon-alpha molecules, including bIFN-alpha, hIFN-alpha, and oTP-1, also reduced PGF and PGE2 secretion in culture. It is likely, therefore, that conceptus and other interferon-alpha molecules exert similar effects on endometrium in vitro and that the antiluteolytic effects of bIFN-alpha in vivo are mediated in part by changes in endometrial prostaglandin synthesis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Holocarboxylase synthetase (HCS) catalyzes the binding of biotin to lysine (K) residues in histones H3 and H4. Histone biotinylation marks play important roles in the repression of genes and retrotransposons. Preliminary studies suggested that K16 in histone H4 is a target for biotinylation by HCS. Here we demonstrated that H4K16bio is overrepresented in repeat regions {pericentromeric alpha satellite repeats; long terminal repeats (LTR)} compared with euchromatin promoters. H4K16bio was also enriched in the repressed interleukin-2 gene promoter. The enrichment at LTR22 and promoter 1 of the sodium-dependent multivitamin transporter (SMVT) depended on biotin supply; and was significantly lower in fibroblasts from an HCS-deficient patient compared with an HCS wild-type control. We conclude that H4K16bio is a real phenomenon and plays a role in the transcriptional repression of repeats and genes. HCS catalyzes the covalent binding of biotin to carboxylases, in addition to its role as a histone biotinyl ligase. HCS null individuals are not viable whereas HCS deficiency is linked to developmental delays and phenotypes such as short life span and low stress resistance. Here, we developed a 96-well plate assay for high-throughput analysis of HCS based on the detection of biotinylated p67 using IRDye-streptavidin and infrared spectroscopy. We demonstrated that the catalytic activity of rHCS depends on temperature and time, and proposed optimal substrate and enzyme concentrations to ensure ideal measurement of rHCS activity and its kinetics. Additionally, we demonstrated that this assay is sensitive enough to detect biotinylation of p67 by endogenous HCS from Jurkat lymphoid cells.
Resumo:
Trypanothione reductase has long been investigated as a promising target for chemotherapeutic intervention in Chagas disease, since it is an enzyme of a unique metabolic pathway that is exclusively present in the pathogen but not in the human host, which has the analog Glutathione reductase. In spite of the present data-set includes a small number of compounds, a combined use of flexible docking, pharmacophore perception, ligand binding site prediction, and Grid-Independent Descriptors GRIND2-based 3D-Quantitative Structure-Activity Relationships (QSAR) procedures allowed us to rationalize the different biological activities of a series of 11 aryl beta-aminocarbonyl derivatives, which are inhibitors of Trypanosoma cruzi trypanothione reductase (TcTR). Three QSAR models were built and validated using different alignments, which are based on docking with the TcTR crystal structure, pharmacophore, and molecular interaction fields. The high statistical significance of the models thus obtained assures the robustness of this second generation of GRIND descriptors here used, which were able to detect the most important residues of such enzyme for binding the aryl beta-aminocarbonyl derivatives, besides to rationalize distances among them. Finally, a revised binding mode has been proposed for our inhibitors and independently supported by the different methodologies here used, allowing further optimization of the lead compounds with such combined structure- and ligand-based approaches in the fight against the Chagas disease.
Resumo:
An increasing number of genes required for mitochondrial biogenesis, dynamics, or function have been found to be mutated in metabolic disorders and neurological diseases such as Leigh Syndrome. In a forward genetic screen to identify genes required for neuronal function and survival in Drosophila photoreceptor neurons, we have identified mutations in the mitochondrial methionyl-tRNA synthetase, Aats-met, the homologue of human MARS2. The fly mutants exhibit age-dependent degeneration of photoreceptors, shortened lifespan, and reduced cell proliferation in epithelial tissues. We further observed that these mutants display defects in oxidative phosphorylation, increased Reactive Oxygen Species (ROS), and an upregulated mitochondrial Unfolded Protein Response. With the aid of this knowledge, we identified MARS2 to be mutated in Autosomal Recessive Spastic Ataxia with Leukoencephalopathy (ARSAL) patients. We uncovered complex rearrangements in the MARS2 gene in all ARSAL patients. Analysis of patient cells revealed decreased levels of MARS2 protein and a reduced rate of mitochondrial protein synthesis. Patient cells also exhibited reduced Complex I activity, increased ROS, and a slower cell proliferation rate, similar to Drosophila Aats-met mutants.
Resumo:
Background: Sleeping sickness is a major cause of death in Africa. Since no secure treatment is available, the development of novel therapeutic agents is urgent. In this context, the enzyme trypanothione reductase (TR) is a prominent molecular target that has been investigated in drug design for sleeping sickness. Results: In this study, comparative molecular field analysis models were generated for a series of Trypanosoma brucei TR inhibitors. Statistically significant results were obtained and the models were applied to predict the activity of external test sets, with good correlation between predicted and experimental results. We have also investigated the structural requirements for the selective inhibition of the parasite's enzyme over the human glutathione reductase. Conclusion: The quantitative structure-activity relationship models provided valuable information regarding the essential molecular requirements for the inhibitory activity upon the target protein, providing important insights into the design of more potent and selective TR inhibitors.
Resumo:
Fatal hyperammonemia secondary to chemotherapy for hematological malignancies or following bone marrow transplantation has been described in few patients so far. In these, the pathogenesis of hyperammonemia remained unclear and was suggested to be multifactorial. We observed severe hyperammonemia (maximum 475 μmol/L) in a 2-year-old male patient, who underwent high-dose chemotherapy with carboplatin, etoposide and melphalan, and autologous hematopoietic stem cell transplantation for a neuroblastoma stage IV. Despite intensive care treatment, hyperammonemia persisted and the patient died due to cerebral edema. The biochemical profile with elevations of ammonia and glutamine (maximum 1757 μmol/L) suggested urea cycle dysfunction. In liver homogenates, enzymatic activity and protein expression of the urea cycle enzyme carbamoyl phosphate synthetase 1 (CPS1) were virtually absent. However, no mutation was found in CPS1 cDNA from liver and CPS1 mRNA expression was only slightly decreased. We therefore hypothesized that the acute onset of hyperammonemia was due to an acquired, chemotherapy-induced (posttranscriptional) CPS1 deficiency. This was further supported by in vitro experiments in HepG2 cells treated with carboplatin and etoposide showing a dose-dependent decrease in CPS1 protein expression. Due to severe hyperlactatemia, we analysed oxidative phosphorylation complexes in liver tissue and found reduced activities of complexes I and V, which suggested a more general mitochondrial dysfunction. This study adds to the understanding of chemotherapy-induced hyperammonemia as drug-induced CPS1 deficiency is suggested. Moreover, we highlight the need for urgent diagnostic and therapeutic strategies addressing a possible secondary urea cycle failure in future patients with hyperammonemia during chemotherapy and stem cell transplantation.