207 resultados para Troponin T
Resumo:
Mutants of each of the four divalent cation binding sites of chicken skeletal muscle troponin C (TnC) were constructed using site directed mutagenesis to convert Asp to Ala at the first coordinating position in each site. With a view to evaluating the importance of site-site interactions both within and between the N- and C-terminal domains, in this study the mutants are examined for their ability to associate with other components of the troponin-tropomyosin regulatory complex and to regulate thin filaments. The functional effects of each mutation in reconstitution assays are largely confined to the domain in which it occurs, where the unmutated site is unable to compensate for the defect, Thus the mutants of sites I and II bind to the regulatory complex but are impaired in ability to regulate tension and actomyosin ATPase activity, whereas the mutants of sites III and IV regulate activity but are unable to remain bound to thin filaments unless Ca2+ is present. When all four sites are intact, free Mg2+ causes a 50-60-fold increase in TnC's affinity for the other components of the regulatory complex, allowing it to attach firmly to thin filaments. Calcium can replace Mg2+ at a concentration ratio of 1:5000, and at this ratio the Ca2 . TnC complex is more tightly bound to the filaments than the Mg2 . TnC form, In the C-terminal mutants, higher concentrations of Ca2+ (above tension threshold) are required to effect this transformation than in the recombinant wild-type protein, suggesting that the mutants reveal an attachment mediated by Ca2+ in the N-domain sites.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
To assess the structural and functional significance of the N helix (residues 3-13) of avian recombinant troponin C (rTnC), we have constructed NHdel, in which residues 1-11 have been deleted, both in rTnC and in the spectral probe mutant F29W (Pearlstone, J. R., Borgford, T., Chandra, M., Oikawa, K., Kay, C. M., Herzberg, O., Moult, J., Herklotz, A., Reinach, F. C., and Smillie, L.B. (1992) Biochemistry 31, 6545-6553). Comparison of the far- and near-UV CD spectra (±Ca2+) of F29W and F29W/ NHdel and titration of the Ca2+-induced ellipticity and fluorescence changes indicates that the deletion has little effect on the global fold of the molecule but reduces the Ca2+ affinity of the N domain, but not the C domain, by 1.6-1.8-fold. Comparisons of the mutants NHdel, F29W, and F29W/NHdel with rTnC have been made using several functional assays. In reconstituted troponin-tropomyosin actomyosin subfragment 1 and myofibrillar ATPase systems, both F29W and NHdel have significantly reduced Ca2+-activated enzymic activities. These effects are cumulative in the double mutant F29W/ NHdel. On the other hand, maximal isometric tension development in Ca2+-activated reconstituted skinned fibers is not affected with F29W and NHdel, although the Ca2+ sensitivity of NHdel in this system is markedly reduced. We conclude that both mutations, NHdel and F29W, are functionally deleterious, possibly affecting interactions of the N domain with troponin I and/or T.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A low simplified Pulmonary Embolism Severity Index (sPESI), defined as age ≤80 years and absence of systemic hypotension, tachycardia, hypoxia, cancer, heart failure, and lung disease, identifies low-risk patients with acute pulmonary embolism (PE). It is unknown whether cardiac troponin testing improves the prediction of clinical outcomes if the sPESI is not low. In the prospective Swiss Venous Thromboembolism Registry, 369 patients with acute PE and a troponin test (conventional troponin T or I, highly sensitive troponin T) were enrolled from 18 hospitals. A positive test result was defined as a troponin level above the manufacturers assay threshold. Among the 106 (29%) patients with low sPESI, the rate of mortality or PE recurrence at 30 days was 1.0%. Among the 263 (71%) patients with high sPESI, 177 (67%) were troponin-negative and 86 (33%) troponin-positive; the rate of mortality or PE recurrence at 30 days was 4.6% vs. 12.8% (p=0.015), respectively. Overall, risk assessment with a troponin test (hazard ratio [HR] 3.39, 95% confidence interval [CI] 1.38-8.37; p=0.008) maintained its prognostic value for mortality or PE recurrence when adjusted for sPESI (HR 5.80, 95%CI 0.76-44.10; p=0.09). The combination of sPESI with a troponin test resulted in a greater area under the receiver-operating characteristic curve (HR 0.72, 95% CI 0.63-0.81) than sPESI alone (HR 0.63, 95% CI 0.57-0.68) (p=0.023). In conclusion, although cardiac troponin testing may not be required in patients with a low sPESI, it adds prognostic value for early death and recurrence for patients with a high sPESI.
Resumo:
BACKGROUND Peak levels of troponin T (TnT) reliably predict morbidity and mortality after cardiac surgery. However, the therapeutic window to manage CABG-related in-hospital complications may close before the peak is reached. We investigated whether early TnT levels correlate as well with complications after coronary artery bypass grafting (CABG) surgery. METHODS A 12 month consecutive series of patients undergoing elective isolated CABG procedures (mini-extra-corporeal circuit, Cardioplegic arrest) was analyzed. Logistic regression modeling was used to investigate whether TnT levels 6 to 8 hours after surgery were independently associated with in-hospital complications (either post-operative myocardial infarction, stroke, new-onset renal insufficiency, intensive care unit (ICU) readmission, prolonged ICU stay (>48 hours), prolonged need for vasopressors (>24 hours), resuscitation or death). RESULTS A total of 290 patients, including 36 patients with complications, was analyzed. Early TnT levels (odds ratio (OR): 6.8, 95% confidence interval (CI): 2.2-21.4, P=.001), logistic EuroSCORE (OR: 1.2, 95%CI: 1.0-1.3, P=.007) and the need for vasopressors during the first 6 postoperative hours (OR: 2.7, 95%CI: 1.0-7.1, P=.05) were independently associated with the risk of complications. With consideration of vasopressor use during the first 6 postoperative hours, the sum of specificity (0.958) and sensitivity (0.417) of TnT for subsequent complications was highest at a TnT cut-off value of 0.8 ng/mL. CONCLUSION Early TnT levels may be useful to guide ICU management of CABG patients. They predict clinically relevant complications within a potential therapeutic window, particularly in patients requiring vasopressors during the first postoperative hours, although with only moderate sensitivity.
Resumo:
To systematically investigate putative causes of non-coronary high-sensitive troponin elevations in patients presenting to a tertiary care emergency department. In this cross-sectional analysis, patients who received serial measurements of high-sensitive troponin T between 1 August 2010 and 31 October 2012 at the Department of Emergency Medicine were included. The following putative causes were considered to be associated with non-acute coronary syndrome-related increases in high-sensitive troponin T: acute pulmonary embolism, renal insufficiency, aortic dissection, heart failure, peri-/myocarditis, strenuous exercise, rhabdomyolysis, cardiotoxic chemotherapy, high-frequency ablation therapy, defibrillator shocks, cardiac infiltrative disorders (e.g., amyloidosis), chest trauma, sepsis, shock, exacerbation of chronic obstructive pulmonary disease, and diabetic ketoacidosis. During the study period a total of 1,573 patients received serial measurements of high-sensitive troponin T. Of these, 175 patients were found to have acute coronary syndrome leaving 1,398 patients for inclusion in the study. In 222 (30 %) of patients, no putative cause described in the literature could be attributed to the elevation in high-sensitive troponin T observed. The most commonly encountered mechanism underlying the troponin T elevation was renal insufficiency that was present in 286 patients (57 %), followed by cerebral ischemia in 95 patients (19 %), trauma in 75 patients (15 %) and heart failure in 41 patients (8 %). Non-acute coronary syndrome-associated elevation of high-sensitive troponin T levels is commonly observed in the emergency department. Renal insufficiency and acute cerebral events are the most common conditions associated with high-sensitive troponin T elevation.
Resumo:
In the present study, we wanted to (1) evaluate whether high-sensitive troponin T levels correlate with the grade of renal insufficiency and (2) test the accuracy of high-sensitive troponin T determination in patients with renal insufficiency for diagnosis of acute myocardial infarction (AMI). In this cross-sectional analysis, all patients who received serial measurements of high-sensitive troponin T from August 1, 2010, to October 31, 2012, at the Department of Emergency Medicine were included. We analyzed data on baseline characteristics, reason for referral, medication, cardiovascular risk factors, and outcome in terms of presence of AMI along with laboratory data (high-sensitive troponin T, creatinine). A total of 1,514 patients (67% male, aged 65 ± 16 years) were included, of which 382 patients (25%) had moderate to severe renal insufficiency and significantly higher levels of high-sensitive troponin T on admission (0.028 vs 0.009, p <0.0001). In patients without AMI, high-sensitive troponin T correlated inversely with the estimated glomerular filtration rate (R = -0.12, p <0.0001). Overall, sensitivity of an elevated high-sensitive troponin for diagnosis of AMI was 0.64 (0.56 to 0.71) and the specificity was 0.48 (0.45 to 0.51). The area under the curve of the receiver operating characteristic for all patients was 0.613 (standard error [SE] 0.023), whereas it was 0.741 (SE 0.029) for patients with a Modification of Diet in Renal Disease estimated glomerular filtration rate >60 ml/min presenting with acute chest pain or dyspnea and 0.535 (SE 0.056) for patients with moderate to severe renal insufficiency presenting with acute chest pain or dyspnea. In conclusion, the diagnostic accuracy for presence of AMI of a baseline measurement of high-sensitive troponin in patients with renal insufficiency was poor and resembles tossing a coin.
Resumo:
OBJECTIVE To study the relevance of high-sensitive troponin measurements in the acute workup in patients admitted to the emergency department of a large university hospital due to syncope. METHODS In this retrospective study all patients admitted to the emergency department because of syncope of the Inselspital, University Hospital Bern between 01 August 2010 and 31 October 2012, with serial determination of high-sensitive troponin (baseline and three hours control) were included. Of all identified patients we obtained data on demographics, laboratory data, ECG as well as on outcome. A change in high-sensitive troponin in the three hours control of +/-30% compared to baseline was considered significant. RESULTS A total of 121 patients with a mean age of 67 years (SD 16) were included in the study. 79 patients (65%) were male and 42 (35%) were female. There was no significant difference in the median high sensitive-troponin level at baseline and in the three hours control (0.01 mcg/L [0.003 to 0.022] versus 0.011 mcg/L [0.003 to 0.022], p = 0.47). Median percent change in high-sensitive troponin level between baseline and control was 0% (-9.1 to 5). 51 patients (42%) had elevated high-sensitive troponin levels at baseline with 7 patients (6%) showing a dynamic of +/-30% change from the baseline measurement in the 3 hours control. 3 of these patients received coronary angiography due to the dynamic in high-sensitive troponin, none of whom needed intervention for coronary revascularization. CONCLUSIONS On basis of the current study, where no single patient took benefit from determination of high-sensitive troponin, measurement of cardiac troponins should be reserved for patients with syncope presenting with symptoms suggestive for the presence of an acute cardiac syndrome.
Resumo:
Thin filament regulation of muscle contraction is a calcium dependent process mediated by the Tn complex. Calcium is released into the sarcomere and is bound by TnC. The subsequent conformation change in TnC is thought to begin a cascade of events that result in the activation of the actin-myosin ATPase. While the general events of this cascade are known, the molecular mechanisms of this signal transduction event are not. Recombinant DNA techniques, physiological and biochemical studies have been used to localize and characterize the structural domains of TnC that play a role in the calcium dependent signal transduction event that serves to trigger muscle contraction. The strategy exploited the observed functional differences between the isoforms of TnC to map regions of functional significance to the proteins. Chimeric cardiac-skeletal TnC proteins were generated to localize the domains of TnC that are required for maximal function in the myofibrilar ATPase assay. Characterization of these regions has yielded information concerning the molecular mechanism of muscle contraction. ^
Resumo:
Contraction of vertebrate cardiac muscle is regulated by the binding of Ca$\sp{2+}$ to the troponin C (cTnC) subunit of the troponin complex. In this study, we have used site-directed mutagenesis and a variety of assay techniques to explore the functional roles of regions in cTnC, including Ca$\sp{2+}$/Mg$\sp{2+}$-binding sites III and IV, the functionally inactive site I, the N-terminal helix, the N-terminal hydrophobic pocket and the two cysteine residues with regard to their ability to form disulfide bonds. Conversion of the first Ca$\sp{2+}$ ligand from Asp to Ala inactivated sites III and IV and decreased the apparent affinity of cTnC for the thin filament. Conversion of the second ligand from Asn to Ala also inactivated these sites in the free protein but Ca$\sp{2+}$-binding was recovered upon association with troponin I and troponin T. The Ca$\sp{2+}$-concentrations required for tight thin filament-binding by proteins containing second-ligand mutations were significantly greater than that required for the wild-type protein. Mutation of site I such that the primary sequence was that of an active site with the first Ca$\sp{2+}$ ligand changed from Asp to Ala resulted in a 70% decrease in maximal Ca$\sp{2\sp+}$ dependent ATPase activity in both cardiac and fast skeletal myofibrils. Thus, the primary sequence of the inactive site I in cTnC is functionally important. Major changes in the sequence of the N-terminus had little effect on the ability of cTnC to recover maximal activity but deletion of the first nine residues resulted in a 60 to 80% decrease in maximal activity with only a minor decrease in the pCa$\sb{50}$ of activation, suggesting that the N-terminal helix must be present but that a specific sequence is not required. The formation of an inter- or intramolecular disulfide bonds caused the exposure of hydrophobic surfaces on cTnC and rendered the protein Ca$\sp{2+}$ independent. Finally, elution patterns from a hydrophobic interactions column suggest that cTnC undergoes a significant change in hydrophobicity upon Ca$\sp{2+}$ binding, the majority of which is caused by site II. These latter data show an interesting correlation between exposure of hydrophobic surfaces on and activation of cTnC. Overall, these results represent significant progress toward the elucidation of the functional roles of a variety of structural regions in cTnC. ^
Resumo:
$\rm Ca\sp{2+}$-dependent exposure of an N-terminal hydrophobic region in troponin C (TnC) is thought to be important for the regulation of contraction in striated muscle. To study these conformational changes in cardiac troponin (cTnC), the $\varepsilon$C and $\varepsilon$H chemical shifts for all 10 Met residues in cTnC were sequence-specific assigned on NMR spectra using a combination of two dimensional NMR techniques and site-directed mutagenesis. The assigned methyl-Met chemical shifts were used as structural markers to monitor conformational changes induced by $\rm Ca\sp{2+}.$ The results showed that binding of $\rm Ca\sp{2+}$ to the regulatory site in the N-domain induced large changes in the $\varepsilon$H and $\varepsilon$C chemical shifts of Met 45, Met 80, Met 81 in the predicted N-terminal hydrophobic region, but had no effect on the chemical shifts of Met residues located in the C-domain. These results suggest that the $\rm Ca\sp{2+}$-dependent functions of cTnC are mainly through N-terminal domain of cTnC.^ To further define the molecular mechanism by which TnC regulates muscle contraction, single Cys residues were engineered at positions 45, 81, 84 or 85 in the N-terminal hydrophobic region of cTnC to provide sites for attachment of specific blocking groups. Blocking groups were coupled to these Cys residues in cTnC mutants and the covalent adducts were tested for activity in TnC-extracted myofibrils. Covalent modification of cTnC(C45) had no effect on maximal myofibril ATPase activity. Greatly decreased myofibril ATPase activity resulted when the peptide or biotin was conjugated to residue 81 in cTnC(C81), while less inhibition resulted from covalent modification of cTnC(C84) or cTnC(C85). The results suggest that limited sites of the N-terminal hydrophobic region in cTnC are important for transducing the $\rm Ca\sp{2+}$ signal to troponin I (TnI) and are sensitive to modification, while other regions are less important or can adapt to steric hindrances introduced by bulky blocking groups.^ Although the exposed TnI interaction site in the N-terminal hydrophobic region of TnC is crucial for function of TnC, other regions in the N-domain of TnC may also participate in transducing the $\rm Ca\sp{2+}$ signal and conferring the maximal activation of actomyosin ATPase. The interactions between the B-/C-helices of cTnC and cTnI were characterized using a combination of site-directed mutagenesis, fluorescence and covalent modification. The results suggest that the $\rm Ca\sp{2+}$-dependent interactions of the B-/C-helices of cTnC with TnI may be required for the maximal activation of muscle contraction. ^