991 resultados para Tropical Estuarine System
Resumo:
Utilisation by fish of different estuarine habitats is known to vary at many different temporal scales, however no study to date has examined how utilisation varies at all the relevant times scales simultaneously. Here, we compare the utilisation by fish of sandy, intertidal foreshore habitats in a subtropical estuary at four temporal scales: between major spawning periods (spring/ summer and winter), among months within spawning periods, between the full and new moon each month, and between night and day within those lunar phases. Comparisons of assemblage composition, abundance of individuals and of fish in seven different,ecological guilds' were used to identify the temporal scales at which fish varied their use of unvegetated sandy habitats in the lower Noosa Estuary, Queensland, Australia. Fish assemblages were sampled with a seine net at three different regions. The most numerically dominant species caught were southern herring (Herklotsichthys castelnaui: Clupeidae), sand whiting (Sillago ciliata: Sillaginidae), weeping toadfish (Torquigener pleurogramma: Tetraodomidae), and silver biddy (Gerres subfasciatus: Gerreidae). Considerable variation at a range of temporal scales from short term (day versus night) to longer term (spawning periods) was detected for all but one of the variables examined. The clearest patterns were observed for diurnal effects, where generally abundance was greater at night than during the day. There were also strong lunar effects, although there were no consistent patterns between full moon and new moon periods. Significant differences among months within spawning periods were more common than differences between the actual spawning periods. The results clearly indicate that utilisation of sandy, unvegetated estuarine habitats is very dynamic and highly variable in space and time. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Geochemical and geophysical approaches have been used to investigate the freshwater and saltwater dynamics in the coastal Biscayne Aquifer and Biscayne Bay. Stable isotopes of oxygen and hydrogen, and concentrations of Sr2+ and Ca2+ were combined in two geochemical mixing models to provide estimates of the various freshwater inputs (precipitation, canal water, and groundwater) to Biscayne Bay and the coastal canal system in South Florida. Shallow geophysical electromagnetic and direct current resistivity surveys were used to image the geometry and stratification of the saltwater mixing zone in the near coastal (less than 1km inland) Biscayne Aquifer. The combined stable isotope and trace metal models suggest a ratio of canal input-precipitation-groundwater of 38%–52%–10% in the wet season and 37%–58%–5% in the dry season with an error of 25%, where most (20%) of the error was attributed to the isotope regression model, while the remaining 5% error was attributed to the Sr2+/Ca2+ mixing model. These models suggest rainfall is the dominate source of freshwater to Biscayne Bay. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for less than 2% of the total input. A similar Sr 2+/Ca2+ tracer model indicates precipitation is the dominate source in 9 out of 10 canals that discharge into Biscayne Bay. The two-component mixing model converged for 100% of the freshwater canal samples in this study with 63% of the water contributed to the canals coming from precipitation and 37% from groundwater inputs ±4%. There was a seasonal shift from 63% precipitation input in the dry season to 55% precipitation input in the wet season. The three end-member mixing model converged for only 60% of the saline canal samples possibly due to non-conservative behavior of Sr2+ and Ca2+ in saline groundwater discharging into the canal system. Electromagnetic and Direct Current resistivity surveys were successful at locating and estimating the geometry and depth of the freshwater/saltwater interface in the Biscayne Aquifer at two near coastal sites. A saltwater interface that deepened as the survey moved inland was detected with a maximum interpreted depth to the interface of 15 meters, approximately 0.33 km inland from the shoreline. ^
Resumo:
Zinc stable isotopes measurements by MC-ICP-MS, validated by laboratory intercalibrations, were performed on wild oysters, suspended particles and filtered river/estuarine water samples to provide new constraints for the use of Zn isotopes as environmental tracers. The samples selected were representative of the long range (400 km) transport of metal (Zn, Cd, etc.) contamination from former Zn-refining activities at Decazeville (i.e. δ66Zn > 1 ‰) and its phasing out, recorded during 30 years in wild oysters from the Gironde Estuary mouth (RNO/ROCCH sample bank). The study also addresses additional anthropogenic sources (urban and viticulture) and focuses on geochemical reactivity of Zn in the turbidity gradient and the maximum turbidity zone (MTZ) of the fluvial Gironde Estuary. In this area, dissolved Zn showed a strong removal onto suspended particulate matter (SPM) and progressive enrichment in heavy isotopes with increasing SPM concentrations varying from δ66Zn = -0.02 ‰ at 2 mg/L to +0.90 ‰ at 1310 mg/L. These signatures were attributed to kinetically driven adsorption due to strongly increasing sorption sites in the turbidity gradient and MTZ of the estuary. Oysters from the estuary mouth, contaminated sediments from the Lot River and SPM entering the estuary showed parallel historical evolutions (1979-2010) for Zn/Cd ratios but not for δ66Zn values. Oysters had signatures varying from δ66Zn = 1.43 ‰ in 1983 to 1.18 ‰ in 2010 and were offset by δ66Zn = 0.6 - 0.7 ‰ compared to past (1988) and present SPM from the salinity gradient. Isotopic signatures in river-borne particles entering the Gironde Estuary under contrasting freshwater discharge regimes during 2003-2011 showed similar values (δ66Zn ≈ 0.35 ± 0.03 ‰; 1SD, n=15), i.e. they were neither related to former metal refining activities at least for the past decade nor clearly affected by other anthropogenic sources. Therefore, the Zn isotopic signatures in Gironde oysters reflect the geochemical reactivity of Zn in the estuary rather than signatures of past metallurgical contaminations in the watershed as recorded in contaminated river sediments. The study also shows that the isotopic composition of Zn is strongly fractionated by its geochemical reactivity in the Gironde Estuary, representative of meso-macrotidal estuarine systems.
Resumo:
O sedimento representa um importante depósito de contaminantes e uma fonte de contaminação para a cadeia alimentar aquática. Testes de toxicidade usando anfípodos como organismos-teste são empregados para avaliar sedimentos marinhos e estuarinos, juntamente com análises químicas. O presente trabalho tem como objetivo avaliar a qualidade de sedimentos de seis estações situadas no Sistema Estuarino e Portuário de Santos e São Vicente (São Paulo-Brasil), usando testes de toxicidade aguda com sedimento com anfípodos (Tiburonella viscana) e análises químicas de metais, PCB, e PAH. Outros parâmetros do sedimento foram analisados, como carbono orgânico e granulometria. Foram observados níveis de contaminação mais altos na porção interna do estuário onde se localiza o Porto de Santos e a zona industrial. Os testes de toxicidade mostraram resultados adversos significantes para a maioria das amostras testadas, e os sedimentos da porção interna do estuário apresentaram toxicidade mais alta. As análises de componentes principais indicaram uma relação forte entre contaminação do sedimento e toxicidade. As correlações positivas destes fatores nas amostras estudadas foram usadas para estabelecer os pesos das concentrações químicas que estão associadas com os efeitos adversos. Tais análises permitiram estimar valores limiares de efeito para a contaminação de sedimento através de análises multivariadas, identificando os contaminantes associados com o efeito biológico. Estes valores sugeridos são: Cu, 69.0; Pb, 17.4; Zn, 73.3(mg.kg-1); PAHs, 0.5 (mg.kg-1) e PCBs, 0.1 (µg.kg-1).
Resumo:
Sediment quality from Paranagua Estuarine System (PES), a highly important port and ecological zone, was evaluated by assessing three lines of evidence: (1) sediment physical-chemical characteristics; (2) sediment toxicity (elutriates, sediment-water interface, and whole sediment); and (3) benthic community structure. Results revealed a gradient of increasing degradation of sediments (i.e. higher concentrations of trace metals, higher toxicity, and impoverishment of benthic community structure) towards inner PES. Data integration by principal component analysis (PCA) showed positive correlation between some contaminants (mainly As, Cr, Ni, and Pb) and toxicity in samples collected from stations located in upper estuary and one station placed away from contamination sources. Benthic community structure seems to be affected by both pollution and natural fine characteristics of the sediments, which reinforces the importance of a weight-of-evidence approach to evaluate sediments of PES. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A Baía de Vitória é um sistema estuarino da costa leste do Brasil que apresenta grande importância econômica e características ímpares, já que se desenvolveu entre três unidades geomorfológicas distintas. Apesar disto, este ambiente apresenta poucos estudos relacionados às suas características geológicas e oceanográficas. O presente trabalho se focou no preenchimento desta lacuna através da descrição da morfologia, da distribuição sedimentar e dos padrões sonográficos da Baía de Vitória, buscando relações entre os mesmos e inferindo os processos sedimentares dominantes em cada trecho do estuário. A análise integrada mostrou boa correlação entre os métodos e revelou a grande complexidade deste sistema estuarino. Três diferentes regiões foram identificadas mostrando processos distintos: o estuário superior apresentou input sedimentar fluvial e processos estuarinos; um largo trecho da região central do sistema apresentou características erosivas, relacionadas a adaptações morfológicas e ao aumento das correntes provocadas pelos estreitamentos artificiais da baía, propiciando a formação de formas de fundo; e a boca do estuário se apresentou dominada por processos marinhos. Parte da região central do estuário mostrou características mascaradas pela atividade antrópica através da instalação de pontes, aterros e dragagens.
Resumo:
The male adult of Culex (Melanoconion) anoplicitus, a new species from Southern Tropical Atlantic System of Brazil, South America, is described and illustrated. Identification may be made by characteristic morphological aspects of genitalia which are peculiar to this species.
Resumo:
Measurements of acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) were combined in order to verify the ecological hazard of contaminated sediments from the Santos-Cubatão Estuarine System (SE Brazil), which is located in one of the most industrialized areas in the Latin America. Intertidal sediments from the Morrão River estuary were collected seasonally in short cores. The redox conditions, organic matter contents and grain-size were the main controlling factors on SEM distribution. However, clear relationships among these variables and AVS were not observed. The molar SEM/AVS ratios were frequently > 1 especially in the summer, suggesting major metal bioavailability hazard in this humid hot season.
Resumo:
Industrial pollutants, consisting of heavy metals, petroleum residues, petrochemicals, and a wide spectrum of pesticides, enter the marine environment on a massive scale and pose a very serious threat to all forms of aquatic life. Although, earlier, efforts were directed towards the identification of pollutants and their major sources, because of a growing apprehension about the potential harm that pesticides can inflict upon various aquatic fauna and flora, research on fundamental and applied aspects of pesticides in the aquatic environment has mushroomed to a point where it has become difficult to even keep track of the current advances and developments. The Cochin Estuarine System (CES), adjoining the Greater Cochin area, receives considerable amounts of domestic sewage, urban wastes, agricultural runoff as well as effluent from the industrial units spread all along its shores. Since preliminary investigations revealed that the most prominent of organic pollutants discharged to these estuarine waters were the pesticides, the present study was designed to analyse the temporal and spatial distribution profile of some of the more toxic, persistent pesticides ——— organochlorines such as DDT and their metabolites; HCH-isomers; a cyclodiene compound," Endosulfan and a widely distributed, easily degradable, organophosphorus compound, Malathion, besides investigating their sorptional and toxicological characteristics. Although, there were indications of widespread contamination of various regions of the CBS with DDT, HCH-isomers etc., due to inadequacies of the monitoring programmes and due to a glaring void of baseline data the causative factors could not identified authentically. Therefore, seasonal and spatial distributions of some of the more commonly used pesticides in the CES were monitored systematically, (employing Gas Chromatographic techniques) and the results are analysed.
Resumo:
Ecology is the study of systems at a level in which individuals or whole organisms may be considered elements of interaction, either among themselves, or with a loosely organised environmental matrix. Systems at this level are named ecosystems, and ecology, of course, is the biology of ecosystems" (Hargalef, 1968). This thesis includes principally, a study on the ecology of zooplankton of the Cochin backwaters conducted during the years 1971-72. This monsoonal estuarine system is particularly interesting, since it exhibits a wide range of variations in its environmental conditions which is naturally reflected in the fauna also. Several publications on various aspects of its hydrobiology have come out in the recent past. But studies on the zooplankton of the estuary have mostly been discontinuous either in space or time or restricted to its groups
Resumo:
The situation in the backwaters of Kerala, which reportedly had about 70,000 ha of mangroves, is unique in the sense that there has been a total conversion to other uses such as paddy cultivation, coconut plantation, aquaculture, harbour development and urban development In order to save and restore what is left over national and international organisations are mounting pressure on scientists and policy makers to work out ways and means conserving and managing the mangrove ecosystems. In this context, it has been observed in recent years that mangrove vegetation has remained intact in isolated pockets of undisturbed areas in the Cochin estuarine system and also that there is resurgence of mangroves in areas of accretion and silting. The candidate took up the present study with a view to make an inventory of the existing mangrove locations, the areas of resurgence, species composition, zonation and other ecological parameters to understand their dynamism and to suggest a mangement plan for this important coastal ecosystem
Resumo:
Hydrographic characteristics of the southwest coast of India and its adjoining Cochin backwaters (CBW) were studied during the summer monsoon period. Anomalous formation of anoxia and denitrification were observed in the bottom layers of CBW, which 5 have not been previously reported elsewhere in any tropical estuarine systems. The prevalent upwelling in the Arabian Sea (AS) brought cool, high saline, oxygen deficient and nutrient-rich waters towards the coastal zone and bottom layers of CBW during the high tide. High freshwater discharge in the surface layers brought high amount of nutrients and makes the CBW system highly productive. Intrusion of AS waters seems 10 to be stronger towards the upstream end ( 15 km), than had been previously reported, as a consequence of the lowering of river discharges and deepening of channels in the estuary. Time series measurements in the lower reaches of CBW indicated a low mixing zone with increased stratification, 3 h after the high tide (highest high tide) and high variation in vertical mixing during the spring and neap phases. The upwelled waters 15 (O2 40 μM) intruded into the estuary was found to lose more oxygen during the neap phase (suboxic O2 4 μM) than spring phase (hypoxic O2 10 μM). Increased stratification coupled with low ventilation and presence of high organic matter have resulted in an anoxic condition (O2 = 0), 2–6 km away from barmouth of the estuary and leads to the formation of hydrogen sulphide. The reduction of nitrate and formation of nitrite 20 within the oxygen deficient waters indicated strong denitrification intensity in the estuary. The expansion of oxygen deficient zone, denitrification and formation of hydrogen sulphide may lead to a destruction of biodiversity and an increase of green house gas emissions from this region