949 resultados para Trinitrobenzene sulfonic acid
Resumo:
We report the first catalytic application of pore-expanded KIT-6 propylsulfonic acid (PrSO H) silicas, in fatty acid esterification with methanol under mild conditions. As-synthesized PrSO H-KIT-6 exhibits a 40 and 70% enhancement in turnover frequency (TOF) toward propanoic and hexanoic acid esterification, respectively, over a PrSO H-SBA-15 analogue of similar 5 nm pore diameter, reflecting the improved mesopore interconnectivity of KIT-6 over SBA-15. However, pore accessibility becomes rate-limiting in the esterification of longer chain lauric and palmitic acids over both solid acid catalysts. This problem can be overcome via hydrothermal aging protocols which permit expansion of the KIT-6 mesopore to 7 nm, thereby doubling the TOF for lauric and palmitic acid esterification over that achievable with PrSO H-SBA-15. © 2012 American Chemical Society.
Resumo:
Here we present the first application of pore-expanded SBA-15 in heterogeneous catalysis. Pore expansion over the range 6-14 nm confers a striking activity enhancement towards fatty acid methyl ester (FAME) synthesis from triglycerides (TAG), and free fatty acid (FFA), attributed to improved mass transport and acid site accessibility.
Resumo:
Siliceous mesoporous molecular sieves (SBA-15) have been functionalised with propylsulfonic acid groups by both co-condensing 3-mercaptopropyltrimethoxysilane with the solid at the synthesis (sol-gel) stage and by grafting the same compound to pre-prepared SBA-15, followed, in both cases, by oxidation to sulfonic acid. The acidic and catalytic properties of the supported sulfonic acids prepared in the two ways have been compared, using ammonia adsorption calorimetry and the benzylation reaction between benzyl alcohol and toluene. Using a combination of X-ray photoelectron spectroscopy and other analytical techniques, the level of functionalisation and the extent of subsequent oxidation of tethered thiol to sulfonic acid, both in the bulk and close to the surface of SBA-15 particles, have been assessed. The research shows that the co-condensing route leads to higher levels of functionalisation than the grafting route. The extent of oxidation of added thiol to acid groups is similar using the two routes, about 70% near the surface and only 50% in the bulk. Comparison is made with polymer supported sulfonic acid catalysts, Amberlysts 15 and 35, and Nafion. Nafion shows the highest acid strength and the highest specific catalytic activity of all materials studied. Amongst the other materials, average acid strengths are broadly similar but there appears to be a relationship between the concentration of acid sites on the catalysts and their specific activity in the benzylation reaction. A model is proposed to explain this, in which clustering of sulfonic acid groups, even to a small extent, leads to disproportionately enhanced catalytic activity. © 2009 Elsevier B.V. All rights reserved.
Resumo:
Silica-supported sulfonic acids are a class of solid Brønsted acid catalysts that generally comprise organo-sulfonic acid groups tethered to silica surfaces. Methodologies to prepare organically modified silica have been widely developed in separation science and the techniques for their preparation are well documented. The application of this chemistry to prepare pure Brønsted sulfonic acid functionalized mesoporous silicas has stimulated significant research effort in this area, since these materials are interesting alternatives to commercially available sulfonated polymer resins, such as Amberlyst–15 and Nafion-H (sulfonated polystyrene and perfluorinated sulfonic acid resins respectively), which suffer from low surface areas and thermal stability. This chapter presents an overview of the preparation of mesostructured silica supported sulfonic acids, their catalytic applications and reviews the approaches taken to tune catalyst performance in organic transformations.
Resumo:
A simple grafting protocol is reported which affords a ten-fold enhancement in acid site density of mesoporous sulfonic acid silicas compared to conventional syntheses, offering improved process efficiency and new opportunities for tailored supported solid acids in sustainable chemistry. This journal is
Resumo:
Hydrothermal saline promoted grafting of sulfonic acid groups onto SBA-15 and periodic mesoporous organic silica analogues affords solid acid catalysts with high acid site loadings (>2.5 mmol g-1 H+), ordered mesoporosity and tunable hydrophobicity. The resulting catalysts show excellent activity for fatty acid esterification and tripalmitin transesterification to methyl palmitate, with framework phenyl groups promoting fatty acid methyl esters production. (Chemical Equation Presented)
Resumo:
Propylsulfonic acid derivatised SBA-15 catalysts have been prepared by post modification of SBA-15 with mercaptopropyltrimethoxysilane (MPTMS) for the upgrading of a model pyrolysis bio-oil via acetic acid esterification with benzyl alcohol in toluene. Acetic acid conversion and the rate of benzyl acetate production was proportional to the PrSO3H surface coverage, reaching a maximum for a saturation adlayer. Turnover frequencies for esterification increase with sulfonic acid surface density, suggesting a cooperative effect of adjacent PrSO3H groups. Maximal acetic acid conversion was attained under acid-rich conditions with aromatic alcohols, outperforming Amberlyst or USY zeolites, with additional excellent water tolerance.
Resumo:
Gold nanoparticles (Au NPs) with diameters ranging between 15 and 150 nm have been synthesised in water. 15 and 30 nm Au NPs were obtained by the Turkevich and Frens method using sodium citrate as both a reducing and stabilising agent at high temperature (Au NPs-citrate), while 60, 90 and 150 nm Au NPs were formed using hydroxylamine-o-sulfonic acid (HOS) as a reducing agent for HAuCl4 at room temperature. This new method using HOS is an extension of the approaches previously reported for producing Au NPs with mean diameters above 40 nm by direct reduction. Functionalised polyethylene glycol-based thiol polymers were used to stabilise the pre-synthesised Au NPs. The nanoparticles obtained were characterised using uv-visible spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). Further bioconjugation on 15, 30 and 90 nm PEGylated Au NPs were performed by grafting Bovine Serum Albumin, Transferrin and Apolipoprotein E (ApoE).
Resumo:
Free fatty acids (palmitic, stearic and oleic acid) were converted into biodiesel with methanol over composites catalysts consisting in SBA-15 with sulfonic acid groups (SBA-15-SO3H) immobilized in Chitosan (CH), at 60ºC. It was observed that the catalytic activity increased with the amount of SBA-15-SO3H dispersed in CH. It was also observed that the catalytic activity decreased in the series: palmitic acid > stearic acid > oleic. The catalytic stability of [SBA-15-SO3H]3/CH composites was studied. A good stability was observed.
Resumo:
BACKGROUND AND AIMS: Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) has been shown to act as a negative regulator of T cell function and has been implicated in the regulation of T helper 1 (Th1)/Th2 development and the function of regulatory T cells. Tests were carried out to determine whether anti-CTLA-4 treatment would alter the polarisation of naive T cells in vivo. METHODS: Mice were treated with anti-CTLA-4 monoclonal antibody (mAb) (UC10-4F10) at the time of immunisation or colonic instillation of trinitrobenzene sulfonic acid (TNBS). The cytokines produced by lymph node cells after in vitro antigenic stimulation and the role of indoleamine 2,3 dioxygenase (IDO) and of interleukin-10 (IL-10) were tested, and the survival of mice was monitored. RESULTS: Injection of anti-CTLA-4 mAb in mice during priming induced the development of adaptive CD4(+) regulatory T cells which expressed high levels of ICOS (inducible co-stimulator), secreted IL-4 and IL-10. This treatment inhibited Th1 memory responses in vivo and repressed experimental intestinal inflammation. The anti-CTLA-4-induced amelioration of disease correlated with IDO expression and infiltration of ICOS(high) Foxp3(+) T cells in the intestine, suggesting that anti-CTLA-4 acted indirectly through the development of regulatory T cells producing IL-10 and inducing IDO. CONCLUSIONS: These observations emphasise the synergy between IL-10 and IDO as anti-inflammatory agents and highlight anti-CTLA-4 treatment as a potential novel immunotherapeutic approach for inducing adaptive regulatory T cells.
Resumo:
Compounds derived from fungi has been the subject of many studies in order to broaden the knowledge of their bioactive potential. Polysaccharides from Caripia montagnei have been described to possess anti-inflammatory and antioxidant properties. In this study, glucans extracted from Caripia montagnei mushroom were chemically characterized and their effects evaluated at different doses and intervals of treatment. It was also described their action on colonic injury in the model of colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS), and its action on cells of the human colon carcinoma (HT-29). Compounds extracted of C. montagnei contain high level of carbohydrates (96%), low content of phenolic compounds (1.5%) and low contamination with proteins (2.5%). The (FT-IR) and (NMR) analysis showed that polysaccharides from this species of mushroom are composed of α- and β-glucans. The colonic damage was evaluated by macroscopic, histological, biochemical and immunologic analyses. The results showed a reduction of colonic lesions in all groups treated with the glucans of Caripia montagnei (GCM). GCM significantly reduced the levels of IL-6 (50 and 75 mg/kg, p < 0.05), a major inflammatory cytokine. Biochemical analyses showed that such glucans acted on reducing levels of alkaline phosphatase (75 mg/kg, p < 0.01), nitric oxide (p < 0.001), and myeloperoxidase (p < 0.001). These results were confirmed microscopically by the reduction of cellular infiltration. The increase of catalase activity suggest a protective effect of GCM on colonic tissue, confirming their anti-inflammatory potential. GCM displayed cytostatic activity against HT-29 cells, causing accumulation of cells in G1 phase, blocking the cycle cell progression. Those glucans also showed ability to modulate the adhesion of HT-29 cells to Matrigel® and reduced the oxidative stress. The antiproliferative activity against HT-29 cells displayed by GCM (p <0.001) can be attributed to its cytostatic activity and induction of apoptosis by GCM
Resumo:
The aim of the present work was to compare colonic mucosa and plasmatic oxidative stress measured concomitantly and with different degrees of injury in rats with colitis induced by trinitrobenzene sulfonic acid. Three groups were studied: control group, colitis group, and colitis exacerbated by diclofenac. Enzymatic markers of colon injury showed enhanced activity in both groups with colitis. The colitis group treated with diclofenac presented higher colonic damage score than the other groups. In both groups with colitis, higher values of tert butyl hydroperoxide-initiated-chemiluminescence and thiobarbituric acid-reactive substances in tissue and decreased total radical-trapping antioxidant potential (TRAP) levels in plasma were found. In conclusion, independently of the degree of colonic mucosa injury and inflammation, oxidative stress in tissue occurs as a consequence of pro-oxidants increase, and is not explained by a reduction of antioxidant defenses. In both conditions, TRAP determination decreases in plasma, but not in tissue.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Ethnopharmacological relevance: In Brazilian traditional medicine, Arctium lappa (Asteraceae), has been reported to relieve gastrointestinal symptoms. Aim of the study: In the present study, we investigated the effects of the lactone sesquiterpene onopordopicrin enriched fraction (ONP fraction) from Arctium lappa in an experimental colitis model induced by 2,4,6 trinitrobenzene sulfonic acid and performed experiments to elucidate the underlying action mechanisms involved in that effect. Materials and methods: ONP fraction (25 and 50 mg/kg/day) was orally administered 48, 24 and 1 h prior to the induction of colitis and 24 h after. The inflammatory response was assessed by gross appearance, myeloperoxidase (MPO) activity, tumor necrosis factor alpha (TNF-α) levels and a histological study of the lesions. We determined cyclooxygenase (COX)-1 and -2 protein expressions by western blotting and immunohistochemistry assays. Results: TNBS group was characterized by increased colonic wall thickness, edema, diffuse inflammatory cell infiltration, increased MPO activity and TNF-α levels. On the contrary, ONP fraction (25 and 50 mg/kg) treatment significantly reduced the macroscopic inflammation scores (p<0.05 and p<0.01, respectively) and morphological alterations associated with an increase in the mucus secretion. Similarly, the degree of neutrophil infiltration and the cytokine levels were significantly ameliorated. Moreover, COX-2 expression was up regulated in TNBS-treated rats. In contrast, ONP fraction (50 mg/kg) administration reduced COX-2 overexpression. Conclusions: We have shown that the ONP fraction obtained from Arctium lappa exert marked protective effects in acute experimental colitis, confirming and justifying, at least in part, the popular use of this plant to treat gastrointestinal diseases. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Ciências Biológicas (Farmacologia) - IBB