873 resultados para Tratamento de efluentes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to develop a numerical method to solve boundary value problems concerning to the use of dispersion model for describing the hydraulic behavior of chemical or biological reactors employed in the wastewater treatment. The numerical method was implemented in FORTRAN language generating a computational program which was applied to solve cases involving reaction kinetics of both integer and fractional orders. The developed method was able to solve the proposed problems evidencing to be a useful tool that provides more accurate design of wastewater treatment reactors

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water is an essential element for life. The use of this element, to support the community, defines it as water resource. This feature is being misused and degraded by the dumping of highly contaminated effluents. The impoverishment of its quality poses a risk to human consumption. The necessity to manage this resource, treating the wastewater properly, requires the constant improvement of treatment systems. Another need is to adjust the cost of systems to the demands of communities with less financial clout. This study aimed to adapt and understand the systems of wetlands, improving its efficiency, in an attempt to collaborate with the enrichment of this technology. The practical evidence, with lab-scale prototypes, assembled in ETE Piracicamirim with urban sewage effluent contributed to highlight the problems and operating system design. The bibliographic review showed that several studies had effectiveness for treatment. But it was evident the need for better understanding of dimensioning definitions that better attempted to the answers into the project. Moreover, standardization of system conditions for the specific wastewater treatment is an interesting field, identified, for future studies yet contribute to environmental engineering and sanitation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brazil has one of the largest cattle herds in the world, so the cattle slaughter is one of the most important economic activities in the Brazilian market. But this activity requires a high demand of water, resulting in serious problems about the correct disposal of wastewater generated in the process. This effluent has a high pollution load, becoming its receiving bodies (streams and rivers) unfit for various activities such as public water supply, recreation, fisheries. To minimize the environmental impacts of its industrial wastewater and fallow the local environmental legislation, refrigerators must make the treatment of these effluents. This study aimed to verify the efficiency of a enzymatic reactor, when occur hydrolysis of lipids present in the effluent industrial of an cattle slaughter industry. The treatment system used was composed of two separate reactors: one being the anaerobic fluidized bed reactor (AFBR), inoculated with immobilized enzymes on the matrix support, and the other by sequential batch reactor (SBR) inoculated with activated sludge. Whereas, the reactors have been developed and installed at the Wastewater Treatment Laboratory, Faculdade de Ciências e Tecnologia, UNESP, campus Presidente Prudente. The procedure operating occurred differently for each reactor: preparation and inoculation of enzyme granules, filling the reactor, hydrolysis, and AFBR emptying, filling, aerobic reaction, sedimentation, and emptying the SBR. We performed three experimental stages, with the first and second stage of the work were done reactor analyzes separately, and the third step of the analysis were made with the interconnected reactors... (Complete abstract electronic access below)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the production process of leather a lot of water is used. In addition, companies such as tanneries have high pollution potential. The effluent that is not properly treated , and it is irregularly released in water bodies can cause negative impacts to the environment and generate fines. The aim of this paper is to present the importance of environmental valuation in the effluent treatment system of a tannery, in order to add social and economic development with preservation of environmental quality. A valuation of inputs and outputs of the effluent treatment process from Tannery Bull in Presidente Prudente was made, as well as a proposal to improve the treatment and its valuation. Many of these industries do not account the costs from the effluent treatment and end up spending what could have been avoided. The management of environmental costs promotes sustainable development. Thus, we can conclude that, if there were better control and also an improved management of the tannery, the proposed treatment would bring economic improvement to the company and specially it would not cause much impact on the environment, including improving the quality of life in the region

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Brazilian textile industry has been a highlight in the global economy. Connected with this high economic performance there is the water consumption and the generation of great volumes of wastewater which present high concentrations of dyes and chemical substances. One of the main techniques used in the treatment of textile effluents is adsorption, which has the activated carbon as the main adsorbent. Recently, studies have been developed to find alternative materials to activated carbon and exhibiting good adsorption capacity of dyes. The aim of this work is to study the potential of sawdust as adsorbent of low cost to remove the dye Direct Green 26. The results of this type of dye removal were obtained through the study of adsorption isotherms obtained by spectrophotometry in the UV-visible region analyzed by the Langmuir model. Finally, a comparison was made of these results with those of other adsorbents. Results showed that the average removal of dye, using sawdust, was 78.8% for an initial concentration of 500mg / L and the maximum adsorption capacity of 119mg / g. These results demonstrate the great potential of sawdust as an adsorbent for the dye Direct Green 26.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to find the maximum tension in a group of blades in a Sewage Treatment Stations in a company located in Vale do Paraíba. First, the calculations of the strength requested by the effluents on the structure are done, and the optimum torque of the frame screws is researched. From these data, static simulations using appropriate software and the finite elements method are performed. Based on the results, a possible solution to reduce the strength in this structure is proposed. This study will be provided as a consultation material to the company

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to find the maximum tension in a group of blades in a Sewage Treatment Stations in a company located in Vale do Paraíba. First, the calculations of the strength requested by the effluents on the structure are done, and the optimum torque of the frame screws is researched. From these data, static simulations using appropriate software and the finite elements method are performed. Based on the results, a possible solution to reduce the strength in this structure is proposed. This study will be provided as a consultation material to the company

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the degradation of real and synthetic wastewater was studied using electrochemical processes such as oxidation via hydroxyl radicals, mediated oxidation via active chlorine and electrocoagulation. The real effluent used was collected in the decanter tank of the Federal University of Rio Grande do Norte (ETE-UFRN) of Effluent Treatment Plant and the other a textile effluent dye Ácido Blue 113 (AB 113) was synthesized in the laboratory. In the electrochemical process, the effects of anode material, current density, the presence and concentration of chloride as well as the active chlorine species on site generated were evaluated. Electrodes of different compositions, Ti/Pt, Ti/Ru0,3Ti0,7O2, BDD, Pb/PbO2 and Ti/TiO2-nanotubes/PbO2 were used as anodes. These electrodes were subjected to electroanalytical analysis with the goal of checking how happen the anodic and cathodic processes across the concentrations of NaCl and supporting electrolyte used. The potential of oxygen evolution reaction were also checked. The effect of active chlorine species formed under the process efficiency was evaluated by removing the organic matter in the effluent-ETE UFRN. The wastewater treatment ETE-UFRN using Ti/Pt, DDB and Ti/Ru0,3Ti0,7O2 electrodes was evaluated, obtaining good performances. The electrochemical degradation of effluent-UFRN was able to promote the reduction of the concentration of TOC and COD in all tested anodes. However, Ti/Ru0,3Ti0,7O2 showed a considerable degradation due to active chlorine species generated on site. The results obtained from the electrochemical process in the presence of chloride were more satisfactory than those obtained in the absence. The addition of 0.021 M NaCl resulted in a faster removal of organic matter. Secondly, was prepared and characterized the electrode Ti/TiO2-nanotubes/PbO2 according to what the literature reports, however their preparation was to disk (10 cm diameter) with surface area and higher than that described by the same authors, aiming at application to textile effluent AB 113 dye. SEM images were taken to observe the growth of TiO2 nanotubes and confirm the electrodeposition of PbO2. Atomic Force Microscope was also used to confirm the formation of these nanotubes. Furthermore, was tested and found a high electrochemical stability of the electrode Ti/TiO2-nanotubes/PbO2 for applications such as long-term indicating a good electrocatalytic material. The electrochemical oxidation of AB 113 using Ti/Pt, Pb/PbO2 and Ti/TiO2-nanotubes/PbO2 and Al/Al (electrocoagulation) was also studied. However, the best color removal and COD decay were obtained when Ti/TiO2-nanotubes/PbO2 was used as the anode, removing up to 98% of color and 92,5% of COD decay. Analysis of GC/MS were performed in order to identify possible intermediates formed in the degradation of AB 113.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The produce of waste and the amount of the water produced coming from activities of petroleum production and extraction has been a biggest challenge for oil companies with respect to environmental compliance due to toxicity. The discard or the reuse this effluent containing organic compounds as BTEX (benzene, toluene, ethylbenzene and xylene) can cause serious environmental and human health problems. Thus, the objective this paper was study the performance of two process (separately and sequential) in one synthetic effluent for the benzene, toluene and xylene removal (volatile hydrocarbons presents in the produced water) through of electrochemical treatment using Ti/Pt electrode and exchange resin ionic used in the adsorption process. The synthetic solution of BTX was prepared with concentration of 22,8 mg L-1, 9,7 mg L-1 e 9,0 mg L-1, respectively, in Na2SO4 0,1 mol L-1. The experiments was developed in batch with 0.3 L of solution at 25ºC. The electrochemical oxidation process was accomplished with a Ti/Pt electrode with different current density (J = 10, 20 e 30 mA.cm-2). In the adsorption process, we used an ionic exchange resin (Purolite MB 478), using different amounts of mass (2,5, 5 and 10 g). To verify the process of technics in the sequential treatment, was fixed the current density at 10 mA cm-2 and the resin weight was 2.5 g. Analysis of UV-VIS spectrophotometry, chemical oxygen demand (COD) and gas chromatography with selective photoionization detector (PID) and flame ionization (FID), confirmed the high efficiency in the removal of organic compounds after treatment. It was found that the electrochemical process (separate and sequential) is more efficient than absorption, reaching values of COD removal exceeding 70%, confirmed by the study of the cyclic voltammetry and polarization curves. While the adsorption (separately), the COD removal did not exceed 25,8%, due to interactions resin. However, the sequential process (electrochemical oxidation and adsorption) proved to be a suitable alternative, efficient and cost-effectiveness for the treatment of effluents petrochemical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The textile effluents are a complex mixture of many pollutants that contain high organic loads, severe color and toxic compounds. The high concentration of the textile effluent may cause increased chemical demand (COD) and biochemical (BOD) of oxygen, elevated temperature, acidity or alkalinity, causing damage and environmental problems. In addition to representing a serious threat to human health such effluent is also quite toxic to most aquatic organisms. And for this reason, one must meet the concentration limits for emission sources and sewage system. This study aimed to investigate the performance of electrochemical treatment of a textile effluent for the removal of color, turbidity, dissolved oxygen (DO) and dissolved organic matter by investigating the influence of experimental parameters such as the electrocatalyst materials (Ti/Pt and Ti/Pt-SnSb) and current density in order to compare their efficiency, energy consumption and cost. The dye Novacron Blue CD (NB) was employed in synthetic solution, while the dyes Remazol Yellow 3RS (RY 3RS) Remazol Red RR Gran (RR-RR Gran) and Navy Blue CL-R (NB CL-R) were used to generate simulated textile effluent laboratory. The results showed that the application of electrochemical oxidation process favors the elimination of color effectively independent the electrocatalytic material and current used, as well as treated effluent. However, the influence of electrocatalytic material was crucial to reduction of the organic matter in all cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic dyes have been widely used in various branches of dyeing industries. These compounds are known to be very toxic, mutagenic, cancinogenic only cause aesthetic pollution and irreversible damage to aquatic ecosystems and human health. Are recalcitrant contaminants due to its high stability and resistance to photobleaching and bio. Given this context, the search for technologies that can minimize the effects of such pollutants is required. In recent decades the Electrochemical Oxidation Process Advanced (PEOAs) based on the generation of strongly oxidizing species (radicals ●OH) offer promising approaches for the prevention of problems caused by industrial effluents. This study analyzed the degradation and mineralization of textile dyes and the study of a real effluent in order to assess the feasibility of PEOAs: Electro-Fenton (EF), Photo Electro-Fenton (PEF) and anodic oxidation (AO), and these methods still was studied the Solar Fotoelectro-Fenton (SPEF) in a pre-pilot plant, in order to study the electrochemical treatment on an industrial scale. In the study has compared the effect of PEOAs in the removal of color, TOC and decay kinetics of degradation of the compounds, and also for using the Congo Red (CR) SPEF studies were performed mineralization current efficiency (MCE). The best results are given to the treatment of the PEF for all the studied dyes. From the results it was possible to choose the PEF as the most effective and promising for application of treatment when compared to other methods of treatment, and prove from SPEF that the process can be used in industrial scales, since this method PEF has been improved and solar irradiation replaced the UVA lamp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic dyes have been widely used in various branches of dyeing industries. These compounds are known to be very toxic, mutagenic, cancinogenic only cause aesthetic pollution and irreversible damage to aquatic ecosystems and human health. Are recalcitrant contaminants due to its high stability and resistance to photobleaching and bio. Given this context, the search for technologies that can minimize the effects of such pollutants is required. In recent decades the Electrochemical Oxidation Process Advanced (PEOAs) based on the generation of strongly oxidizing species (radicals ●OH) offer promising approaches for the prevention of problems caused by industrial effluents. This study analyzed the degradation and mineralization of textile dyes and the study of a real effluent in order to assess the feasibility of PEOAs: Electro-Fenton (EF), Photo Electro-Fenton (PEF) and anodic oxidation (AO), and these methods still was studied the Solar Fotoelectro-Fenton (SPEF) in a pre-pilot plant, in order to study the electrochemical treatment on an industrial scale. In the study has compared the effect of PEOAs in the removal of color, TOC and decay kinetics of degradation of the compounds, and also for using the Congo Red (CR) SPEF studies were performed mineralization current efficiency (MCE). The best results are given to the treatment of the PEF for all the studied dyes. From the results it was possible to choose the PEF as the most effective and promising for application of treatment when compared to other methods of treatment, and prove from SPEF that the process can be used in industrial scales, since this method PEF has been improved and solar irradiation replaced the UVA lamp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The treatment of wastewater is essential to human health. One of the most important steps is the disinfection treatment which uses chlorine to eliminate bacteria as required by environmental agencies. However, the identification of potentially toxic byproducts generated by this method, such as trihalomethanes, has stimulated the development of new alternative disinfection technologies. Among them, heterogeneous photocatalysis, TiO2 photocatalysis and electrochemical disinfection are considered suitable alternatives to the chlorination method. Thus, the present dissertation analyzes the evolution of active chlorine species in a synthetic NaCl solution and it is tested to treat a synthetic solution of the dye Reactive Blue 19 using boron-doped diamond (BDD) and ruthenium oxide (Ti/Ru0.3Ti0.7O2) as anodes. The indirect electrochemical process was discussed in terms of mineralization of the total organic load and percentage of color removal in order to evaluate the applicability of electrochemical technology. Electrochemical experiments were carried out with different current densities (25, 50 and 75 mA.cm-2) during 120 minutes. On the other hand, other important parameter in this study was the influence of the proportion sp3/sp2 on BDD anode on the performance of the evolution of active chlorine species which was investigated by electrolytic techniques (linear polarization), with the intention of determining the related training oxidizing species and consumption energy to chemical or electrochemical reactions. From the results, it can be noted that the BDD electrode showed better efficiency throughout the electrochemical process.