988 resultados para Transient Modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the development of a two-dimensional transient catalyst model. Although designed primarily for two-stroke direct injection engines, the model is also applicable to four-stroke lean burn and diesel applications. The first section describes the geometries, properties and chemical processes simulated by the model and discusses the limitations and assumptions applied. A review of the modeling techniques adopted by other researchers is also included. The mathematical relationships which are used to represent the system are then described, together with the finite volume method used in the computer program. The need for a two-dimensional approach is explained and the methods used to model effects such as flow and temperature distribution are presented. The problems associated with developing surface reaction rates are discussed in detail and compared with published research. Validation and calibration of the model is achieved by comparing predictions with measurements from a flow reactor. While an extensive validation process, involving detailed measurements of gas composition and thermal gradients, has been completed, the analysis is too detailed for publication here and is the subject of a separate technical paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The doubly-fed induction generator (DFIG) now represents the dominant technology in wind turbine design. One consequence of this is limited damping and inertial response during transient grid disturbances. A dasiadecoupledpsila strategy is therefore proposed to operate the DFIG grid-side converter (GSC) as a static synchronous compensator (STATCOM) during a fault, supporting the local voltage, while the DFIG operates as a fixed-speed induction generator (FSIG) providing an inertial response. The modeling aspects of the decoupled control strategy, the selection of protection control settings, the significance of the fault location and operation at sub- and super-synchronous speeds are analyzed in detail. In addition, a case study is developed to validate the proposed strategy under different wind penetrations levels. The simulations show that suitable configuration of the decoupled strategy can be deployed to improve system voltage stability and inertial response for a range of scenarios, especially at high wind penetration. The conclusions are placed in context of the practical limitations of the technology employed and the system conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal comfort is defined as that condition of mind which expresses satisfaction with the thermal environment [1] [2]. Field studies have been completed in order to establish the governing conditions for thermal comfort [3]. These studies showed that the internal climate of a room was the strongest factor in establishing thermal comfort. Direct manipulation of the internal climate is necessary to retain an acceptable level of thermal comfort. In order for Building Energy Management Systems (BEMS) strategies to be efficiently utilised it is necessary to have the ability to predict the effect that activating a heating/cooling source (radiators, windows and doors) will have on the room. The numerical modelling of the domain can be challenging due to necessity to capture temperature stratification and/or different heat sources (radiators, computers and human beings). Computational Fluid Dynamic (CFD) models are usually utilised for this function because they provide the level of details required. Although they provide the necessary level of accuracy these models tend to be highly computationally expensive especially when transient behaviour needs to be analysed. Consequently they cannot be integrated in BEMS. This paper presents and describes validation of a CFD-ROM method for real-time simulations of building thermal performance. The CFD-ROM method involves the automatic extraction and solution of reduced order models (ROMs) from validated CFD simulations. The test case used in this work is a room of the Environmental Research Institute (ERI) Building at the University College Cork (UCC). ROMs have shown that they are sufficiently accurate with a total error of less than 1% and successfully retain a satisfactory representation of the phenomena modelled. The number of zones in a ROM defines the size and complexity of that ROM. It has been observed that ROMs with a higher number of zones produce more accurate results. As each ROM has a time to solution of less than 20 seconds they can be integrated into the BEMS of a building which opens the potential to real time physics based building energy modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A integridade do sinal em sistemas digitais interligados de alta velocidade, e avaliada atravs da simulao de modelos fsicos (de nvel de transstor) custosa de ponto vista computacional (por exemplo, em tempo de execuo de CPU e armazenamento de memria), e exige a disponibilizao de detalhes fsicos da estrutura interna do dispositivo. Esse cenrio aumenta o interesse pela alternativa de modelao comportamental que descreve as caractersticas de operao do equipamento a partir da observao dos sinais elctrico de entrada/sada (E/S). Os interfaces de E/S em chips de memria, que mais contribuem em carga computacional, desempenham funes complexas e incluem, por isso, um elevado nmero de pinos. Particularmente, os buffers de sada so obrigados a distorcer os sinais devido sua dinmica e no linearidade. Portanto, constituem o ponto crtico nos de circuitos integrados (CI) para a garantia da transmisso confivel em comunicaes digitais de alta velocidade. Neste trabalho de doutoramento, os efeitos dinmicos no-lineares anteriormente negligenciados do buffer de sada so estudados e modulados de forma eficiente para reduzir a complexidade da modelao do tipo caixa-negra paramtrica, melhorando assim o modelo standard IBIS. Isto conseguido seguindo a abordagem semi-fsica que combina as caractersticas de formulao do modelo caixa-negra, a anlise dos sinais elctricos observados na E/S e propriedades na estrutura fsica do buffer em condies de operao prticas. Esta abordagem leva a um processo de construo do modelo comportamental fisicamente inspirado que supera os problemas das abordagens anteriores, optimizando os recursos utilizados em diferentes etapas de gerao do modelo (ou seja, caracterizao, formulao, extraco e implementao) para simular o comportamento dinmico no-linear do buffer. Em consequncia, contributo mais significativo desta tese o desenvolvimento de um novo modelo comportamental analgico de duas portas adequado simulao em overclocking que reveste de um particular interesse nas mais recentes usos de interfaces de E/S para memria de elevadas taxas de transmisso. A eficcia e a preciso dos modelos comportamentais desenvolvidos e implementados so qualitativa e quantitativamente avaliados comparando os resultados numricos de extraco das suas funes e de simulao transitria com o correspondente modelo de referncia do estado-da-arte, IBIS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, two wind turbines equipped with a permanent magnet synchronous generator (PMSG) and respectively with a two-level or a multilevel converter are simulated in order to access the malfunction transient performance. Three different drive train mass models, respectively, one, two and three mass models, are considered in order to model the bending flexibility of the blades. Moreover, a fractional-order control strategy is studied comparatively to a classical integer-order control strategy. Computer simulations are carried out, and conclusions about the total harmonic distortion (THD) of the electric current injected into the electric grid are in favor of the fractional-order control strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid growth in high data rate communication systems has introduced new high spectral efficient modulation techniques and standards such as LTE-A (long term evolution-advanced) for 4G (4th generation) systems. These techniques have provided a broader bandwidth but introduced high peak-to-average power ratio (PAR) problem at the high power amplifier (HPA) level of the communication system base transceiver station (BTS). To avoid spectral spreading due to high PAR, stringent requirement on linearity is needed which brings the HPA to operate at large back-off power at the expense of power efficiency. Consequently, high power devices are fundamental in HPAs for high linearity and efficiency. Recent development in wide bandgap power devices, in particular AlGaN/GaN HEMT, has offered higher power level with superior linearity-efficiency trade-off in microwaves communication. For cost-effective HPA design to production cycle, rigorous computer aided design (CAD) AlGaN/GaN HEMT models are essential to reflect real response with increasing power level and channel temperature. Therefore, large-size AlGaN/GaN HEMT large-signal electrothermal modeling procedure is proposed. The HEMT structure analysis, characterization, data processing, model extraction and model implementation phases have been covered in this thesis including trapping and self-heating dispersion accounting for nonlinear drain current collapse. The small-signal model is extracted using the 22-element modeling procedure developed in our department. The intrinsic large-signal model is deeply investigated in conjunction with linearity prediction. The accuracy of the nonlinear drain current has been enhanced through several issues such as trapping and self-heating characterization. Also, the HEMT structure thermal profile has been investigated and corresponding thermal resistance has been extracted through thermal simulation and chuck-controlled temperature pulsed I(V) and static DC measurements. Higher-order equivalent thermal model is extracted and implemented in the HEMT large-signal model to accurately estimate instantaneous channel temperature. Moreover, trapping and self-heating transients has been characterized through transient measurements. The obtained time constants are represented by equivalent sub-circuits and integrated in the nonlinear drain current implementation to account for complex communication signals dynamic prediction. The obtained verification of this table-based large-size large-signal electrothermal model implementation has illustrated high accuracy in terms of output power, gain, efficiency and nonlinearity prediction with respect to standard large-signal test signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we present an atomistic-continuum model for simulations of ultrafast laser-induced melting processes in semiconductors on the example of silicon. The kinetics of transient non-equilibrium phase transition mechanisms is addressed with MD method on the atomic level, whereas the laser light absorption, strong generated electron-phonon nonequilibrium, fast heat conduction, and photo-excited free carrier diffusion are accounted for with a continuum TTM-like model (called nTTM). First, we independently consider the applications of nTTM and MD for the description of silicon, and then construct the combined MD-nTTM model. Its development and thorough testing is followed by a comprehensive computational study of fast nonequilibrium processes induced in silicon by an ultrashort laser irradiation. The new model allowed to investigate the effect of laser-induced pressure and temperature of the lattice on the melting kinetics. Two competing melting mechanisms, heterogeneous and homogeneous, were identified in our big-scale simulations. Apart from the classical heterogeneous melting mechanism, the nucleation of the liquid phase homogeneously inside the material significantly contributes to the melting process. The simulations showed, that due to the open diamond structure of the crystal, the laser-generated internal compressive stresses reduce the crystal stability against the homogeneous melting. Consequently, the latter can take a massive character within several picoseconds upon the laser heating. Due to the large negative volume of melting of silicon, the material contracts upon the phase transition, relaxes the compressive stresses, and the subsequent melting proceeds heterogeneously until the excess of thermal energy is consumed. A series of simulations for a range of absorbed fluences allowed us to find the threshold fluence value at which homogeneous liquid nucleation starts contributing to the classical heterogeneous propagation of the solid-liquid interface. A series of simulations for a range of the material thicknesses showed that the sample width we chosen in our simulations (800 nm) corresponds to a thick sample. Additionally, in order to support the main conclusions, the results were verified for a different interatomic potential. Possible improvements of the model to account for nonthermal effects are discussed and certain restrictions on the suitable interatomic potentials are found. As a first step towards the inclusion of these effects into MD-nTTM, we performed nanometer-scale MD simulations with a new interatomic potential, designed to reproduce ab initio calculations at the laser-induced electronic temperature of 18946 K. The simulations demonstrated that, similarly to thermal melting, nonthermal phase transition occurs through nucleation. A series of simulations showed that higher (lower) initial pressure reinforces (hinders) the creation and the growth of nonthermal liquid nuclei. For the example of Si, the laser melting kinetics of semiconductors was found to be noticeably different from that of metals with a face-centered cubic crystal structure. The results of this study, therefore, have important implications for interpretation of experimental data on the kinetics of melting process of semiconductors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extended flight of the Airborne Ionospheric Observatory during the Geospace Environment Modeling (GEM) Pilot program on January 16, 1990, allowed continuous all-sky monitoring of the two-dimensional ionospheric footprint of the northward interplanetary magnetic field (IMF) cusp in several wavelengths. Especially important in determining the locus of magnetosheath electron precipitation was the 630.0-nm red line emission. The most striking morphological change in the images was the transient appearance of zonally elongated regions of enhanced 630.0-nm emission which resembled rays emanating from the centroid of the precipitation. The appearance of these rays was strongly correlated with the Y component of the IMF: when the magnitude of By was large compared to Bz, the rays appeared; otherwise, the distribution was relatively unstructured. Late in the flight the field of view of the imager included the field of view of flow measurements from the European incoherent scatter radar (EISCAT). The rays visible in 630.0-nm emission exactly aligned with the position of strong flow jets observed by EISCAT. We attribute this correspondence to the requirement of quasi-neutrality; namely, the soft electrons have their largest precipitating fluxes where the bulk of the ions precipitate. The ions, in regions of strong convective flow, are spread out farther along the flow path than in regions of weaker flow. The occurrence and direction of these flow bursts are controlled by the IMF in a manner consistent with newly opened flux tubes; i.e., when |By| > |Bz|, tension in the reconnected field lines produce east-west flow regions downstream of the ionospheric projection of the x line. We interpret the optical rays (flow bursts), which typically last between 5 and 15 min, as evidence of periods of enhanced dayside (or lobe) reconnection when |By| > |Bz|. The length of the reconnection pulse is difficult to determine, however, since strong zonal flows would be expected to persist until the tension force in the field line has decayed, even if the duration of the enhanced reconnection was relatively short.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report in this work the study of the interaction between formic acid and an oxidized platinum surface under open circuit conditions. The investigation was carried out with the aid of in situ infrared spectroscopy, and results analyzed in terms of a mathematical model and numerical simulations. It has been found that during the first seconds of the interaction a small amount of CO(2) is produced and absolutely no adsorbed CO was observed. A sudden drop in potential then follows, which is accompanied by a steep increase first of CO(2) production and then by adsorbed CO. The steep transient was rationalized in terms of an autocatalytic production of free platinum sites which enhances the overall rate of reaction. Modeling and simulation showed nearly quantitative agreement with the experimental observations and provided further insight into some experimentally inaccessible variables such as surface free sites. Finally, based on the understanding provided from the combined experimental and theoretical approach, we discuss the general aspects influencing the open circuit transient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unsteady flow of oil and refrigerant gas through radial clearance in rolling piston compressors has been modeled as a heterogeneous mixture, where the properties are determined from the species conservation transport equation coupled with momentum and energy equations. Time variations of pressure, tangential velocity of the rolling piston and radial clearance due to pump setting have been included in the mixture flow model. Those variables have been obtained by modeling the compression process, rolling piston dynamics and by using geometric characteristics of the pump, respectively. An important conclusion concerning this work is the large variation of refrigerant concentration in the oil-filled radial clearance during the compression cycle. That is particularly true for large values of mass flow rates, and for those cases the flow mixture cannot be considered as having uniform concentration. In presence of low mass flow rates homogeneous flow prevail and the mixture tend to have a uniform concentration. In general, it was observed that for calculating the refrigerant mass flow rate using the difference in refrigerant concentration between compression and suction chambers, a time average value for the gas concentration should be used at the clearance inlet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A correction procedure based on digital signal processing theory is proposed to smooth the numeric oscillations in electromagnetic transient simulation results from transmission line modeling based on an equivalent representation by lumped parameters. The proposed improvement to this well-known line representation is carried out with an Finite Impulse Response (FIR) digital filter used to exclude the high-frequency components associated with the spurious numeric oscillations. To prove the efficacy of this correction method, a well-established frequency-dependent line representation using state equations is modeled with an FIR filter included in the model. The results obtained from the state-space model with and without the FIR filtering are compared with the results simulated by a line model based on distributed parameters and inverse transforms. Finally, the line model integrated with the FIR filtering is also tested and validated based on simulations that include nonlinear and time-variable elements. 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundao de Amparo Pesquisa do Estado de So Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Design parameters, process flows, electro-thermal-fluidic simulations and experimental characterizations of Micro-Electro-Mechanical-Systems (MEMS) suited for gas-chromatographic (GC) applications are presented and thoroughly described in this thesis, whose topic belongs to the research activities the Institute for Microelectronics and Microsystems (IMM)-Bologna is involved since several years, i.e. the development of micro-systems for chemical analysis, based on silicon micro-machining techniques and able to perform analysis of complex gaseous mixtures, especially in the field of environmental monitoring. In this regard, attention has been focused on the development of micro-fabricated devices to be employed in a portable mini-GC system for the analysis of aromatic Volatile Organic Compounds (VOC) like Benzene, Toluene, Ethyl-benzene and Xylene (BTEX), i.e. chemical compounds which can significantly affect environment and human health because of their demonstrated carcinogenicity (benzene) or toxicity (toluene, xylene) even at parts per billion (ppb) concentrations. The most significant results achieved through the laboratory functional characterization of the mini-GC system have been reported, together with in-field analysis results carried out in a station of the Bologna air monitoring network and compared with those provided by a commercial GC system. The development of more advanced prototypes of micro-fabricated devices specifically suited for FAST-GC have been also presented (silicon capillary columns, Ultra-Low-Power (ULP) Metal OXide (MOX) sensor, Thermal Conductivity Detector (TCD)), together with the technological processes for their fabrication. The experimentally demonstrated very high sensitivity of ULP-MOX sensors to VOCs, coupled with the extremely low power consumption, makes the developed ULP-MOX sensor the most performing metal oxide sensor reported up to now in literature, while preliminary test results proved that the developed silicon capillary columns are capable of performances comparable to those of the best fused silica capillary columns. Finally, the development and the validation of a coupled electro-thermal Finite Element Model suited for both steady-state and transient analysis of the micro-devices has been described, and subsequently implemented with a fluidic part to investigate devices behaviour in presence of a gas flowing with certain volumetric flow rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis was to improve the commercial CFD software Ansys Fluent to obtain a tool able to perform accurate simulations of flow boiling in the slug flow regime. The achievement of a reliable numerical framework allows a better understanding of the bubble and flow dynamics induced by the evaporation and makes possible the prediction of the wall heat transfer trends. In order to save computational time, the flow is modeled with an axisymmetrical formulation. Vapor and liquid phases are treated as incompressible and in laminar flow. By means of a single fluid approach, the flow equations are written as for a single phase flow, but discontinuities at the interface and interfacial effects need to be accounted for and discretized properly. Ansys Fluent provides a Volume Of Fluid technique to advect the interface and to map the discontinuous fluid properties throughout the flow domain. The interfacial effects are dominant in the boiling slug flow and the accuracy of their estimation is fundamental for the reliability of the solver. Self-implemented functions, developed ad-hoc, are introduced within the numerical code to compute the surface tension force and the rates of mass and energy exchange at the interface related to the evaporation. Several validation benchmarks assess the better performances of the improved software. Various adiabatic configurations are simulated in order to test the capability of the numerical framework in modeling actual flows and the comparison with experimental results is very positive. The simulation of a single evaporating bubble underlines the dominant effect on the global heat transfer rate of the local transient heat convection in the liquid after the bubble transit. The simulation of multiple evaporating bubbles flowing in sequence shows that their mutual influence can strongly enhance the heat transfer coefficient, up to twice the single phase flow value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initiation and maintenance of physiological and pathophysiological oscillatory activity depends on the synaptic interactions within neuronal networks. We studied the mechanisms underlying evoked transient network oscillation in acute slices of the adolescent rat somatosensory cortex and modeled its underpinning mechanisms. Oscillations were evoked by brief spatially distributed noisy extracellular stimulation, delivered via bipolar electrodes. Evoked transient network oscillation was detected with multi-neuron patch-clamp recordings under different pharmacological conditions. The observed oscillations are in the frequency range of 2-5 Hz and consist of 4-12 mV large, 40-150 ms wide compound synaptic events with rare overlying action potentials. This evoked transient network oscillation is only weakly expressed in the somatosensory cortex and requires increased [K+]o of 6.25 mM and decreased [Ca2+]o of 1.5 mM and [Mg2+]o of 0.5 mM. A peak in the cross-correlation among membrane potential in layers II/III, IV and V neurons reflects the underlying network-driven basis of the evoked transient network oscillation. The initiation of the evoked transient network oscillation is accompanied by an increased [K+]o and can be prevented by the K+ channel blocker quinidine. In addition, a shift of the chloride reversal potential takes place during stimulation, resulting in a depolarizing type A GABA (GABAA) receptor response. Blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionate (AMPA), N-methyl-D-aspartate (NMDA), or GABA(A) receptors as well as gap junctions prevents evoked transient network oscillation while a reduction of AMPA or GABA(A) receptor desensitization increases its duration and amplitude. The apparent reversal potential of -27 mV of the evoked transient network oscillation, its pharmacological profile, as well as the modeling results suggest a mixed contribution of glutamatergic, excitatory GABAergic, and gap junctional conductances in initiation and maintenance of this oscillatory activity. With these properties, evoked transient network oscillation resembles epileptic afterdischarges more than any other form of physiological or pathophysiological neocortical oscillatory activity.