66 resultados para Transconductance
Resumo:
A Si doped AlGaN/GaN HEMT structure with high Al content (x= 44%) in the barrier layer is grown on sapphire substrate by RF-MBE. The structural and electrical properties of the heterostructure are investigated by the triple axis X-ray diffraction and Van der Pauw-Hall measurement, respectively. The observed prominent Bragg peaks of the GaN and AlGaN and the Hall results show that the structure is of high quality with smooth interface.fabricated and characterized. Better DC characteristics, maximum drain current of 1.0A/mm and extrinsic transconductance of 218mS/mm are obtained when compared with HEMTs fabricated using structures with lower Al mole fraction in the AlGaN barrier layer. The results suggest that the high Al content in the AlGaN barrier layer is promising in improving material electrical properties and device performance.
Resumo:
A process for fabricating n channel JFET/SOS (junction field-effect transistors on silicon-on-sapphire) has been researched. The gate p(+)n junction was obtained by diffusion, and the conductive channel was gotten by a double ion implantation. Both enhancement and depletion mode transistors were fabricated in different processing conditions. From the results of the Co-50 gamma ray irradiation experimental we found that the devices had a good total dose radiation-hardness. When the tot;ll dose was 5Mrad(Si), their threshold voltages shift was less than 0.1V. The variation of transconductance and the channel leakage current were also little.
Resumo:
The single delta -doped InGaAs/AlGaAs pseudomorphic HEMT structure materials were grown by molecular beam epitaxy. The photoluminescence spectra of the materials were studied. There are two peaks in the photoluminescence spectra of the materials, corresponding to two sub energy levels of InGaAs quantum well. The ratio of the two peak's intensity was used as criterion to optimize the layer structures of the materials. The material with optimized layer ;tructures exhibits the 77 It mobility and two-dimensional electron gas density of 16 500 cm(2)/Vs and 2.58 x 10(12) cm(-2) respectively, and the 300 K mobility and two-dimensional electron gas density of 6800 cm(2)/Vs and 2.55 x 10(12) cm(-2) respectively. The pseudomorphic HEMT devices with gate length of 0.2 mum were fabricated using this material. The maximum transconductance of 650 mS/mm and the cut-off frequency of 81 GHz were achieved. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This PhD covers the development of planar inversion-mode and junctionless Al2O3/In0.53Ga0.47As metal-oxidesemiconductor field-effect transistors (MOSFETs). An implant activation anneal was developed for the formation of the source and drain (S/D) of the inversionmode MOSFET. Fabricated inversion-mode devices were used as test vehicles to investigate the impact of forming gas annealing (FGA) on device performance. Following FGA, the devices exhibited a subthreshold swing (SS) of 150mV/dec., an ION/IOFF of 104 and the transconductance, drive current and peak effective mobility increased by 29%, 25% and 15%, respectively. An alternative technique, based on the fitting of the measured full-gate capacitance vs gate voltage using a selfconsistent Poisson-Schrödinger solver, was developed to extract the trap energy profile across the full In0.53Ga0.47As bandgap and beyond. A multi-frequency inversion-charge pumping approach was proposed to (1) study the traps located at energy levels aligned with the In0.53Ga0.47As conduction band and (2) separate the trapped charge and mobile charge contributions. The analysis revealed an effective mobility (μeff) peaking at ~2850cm2/V.s for an inversion-charge density (Ninv) = 7*1011cm2 and rapidly decreasing to ~600cm2/V.s for Ninv = 1*1013 cm2, consistent with a μeff limited by surface roughness scattering. Atomic force microscopy measurements confirmed a large surface roughness of 1.95±0.28nm on the In0.53Ga0.47As channel caused by the S/D activation anneal. In order to circumvent the issue relative to S/D formation, a junctionless In0.53Ga0.47As device was developed. A digital etch was used to thin the In0.53Ga0.47As channel and investigate the impact of channel thickness (tInGaAs) on device performance. Scaling of the SS with tInGaAs was observed for tInGaAs going from 24 to 16nm, yielding a SS of 115mV/dec. for tInGaAs = 16nm. Flat-band μeff values of 2130 and 1975cm2/V.s were extracted on devices with tInGaAs of 24 and 20nm, respectively
Resumo:
The present paper proposes for the first time, a novel design methodology based on the optimization of source/drain extension (SDE) regions to significantly improve the trade-off between intrinsic voltage gain (A(vo)) and cut-off frequency (f(T)) in nanoscale double gate (DG) devices. Our results show that an optimally designed 25 nm gate length SDE region engineered DG MOSFET operating at drain current of 10 mu A/mu m, exhibits up to 65% improvement in intrinsic voltage gain and 85% in cut-off frequency over devices designed with abrupt SIDE regions. The influence of spacer width, lateral source/drain doping gradient and symmetric as well as asymmetrically designed SDE regions on key analog figures of merit (FOM) such as transconductance (g(m)), transconductance-to-current ratio (g(m)/I-ds), Early voltage (V-EA), output conductance (g(ds)) and gate capacitances are examined in detail. The present work provides new opportunities for realizing future low-voltage/low-power analog circuits with nanoscale SDE engineered DG MOSFETs. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper, gain-bandwidth (GB) trade-off associated with analog device/circuit design due to conflicting requirements for enhancing gain and cutoff frequency is examined. It is demonstrated that the use of a nonclassical source/drain (S/D) profile (also known as underlap channel) can alleviate the GB trade-off associated with analog design. Operational transconductance amplifier (OTA) with 60 nm underlap S/D MOSFETs achieve 15 dB higher open loop voltage gain along with three times higher cutoff frequency as compared to OTA with classical nonunderlap S/D regions. Underlap design provides a methodology for scaling analog devices into the sub-100 nm regime and is advantageous for high temperature applications with OTA, preserving functionality up to 540 K. Advantages of underlap architecture over graded channel (GC) or laterally asymmetric channel (LAC) design in terms of GB behavior are demonstrated. Impact of transistor structural parameters on the performance of OTA is also analyzed. Results show that underlap OTAs designed with spacer-to-straggle ratio of 3.2 and operated below a bias current of 80 microamps demonstrate optimum performance. The present work provides new opportunities for realizing future ultra wide band OTA design with underlap DG MOSFETs in silicon-on-insulator (SOI) technology. Index Terms—Analog/RF, double gate, gain-bandwidth product, .
Resumo:
This paper presents a new design approach for a rail-to-rail bulk-driven input stage using a standard single-well (n-well in this paper) CMOS technology. This input stage can provide nearly constant transconductance and constant slew rate over the entire input common-mode voltage, operating with a wide supply voltage ranging from sub 1-volt (V/sub T0/+ 3V/sub DSsat/) to the maximum allowed for the CMOS process, as well as preventing latch-up.
Resumo:
A transimpedance amplifier (TIA) is used, in radiation detectors like the positron emission tomography(PET), to transform the current pulse produced by a photo-sensitive device into an output voltage pulse with a desired amplitude and shape. The TIA must have the lowest noise possible to maximize the output. To achieve a low noise, a circuit topology is proposed where an auxiliary path is added to the feedback TIA input, In this auxiliary path a differential transconductance block is used to transform the node voltage in to a current, this current is then converted to a voltage pulse by a second feedback TIA complementary to the first one, with the same amplitude but 180º out of phase with the first feedback TIA. With this circuit the input signal of the TIA appears differential at the output, this is used to try an reduced the circuit noise. The circuit is tested with two different devices, the Avalanche photodiodes (APD) and the Silicon photomultiplier (SIPMs). From the simulations we find that when using s SIPM with Rx=20kΩ and Cx=50fF the signal to noise ratio is increased from 59 when using only one feedback TIA to 68.3 when we use an auxiliary path in conjunction with the feedback TIA. This values where achieved with a total power consumption of 4.82mv. While the signal to noise ratio in the case of the SIPM is increased with some penalty in power consumption.
Resumo:
A linear, tunable CMOS transconductance stage is introduced. Drain voltage of the input transistor operating in triode region is settled by a regulation loop and a first-order linear relationship between g(m) and a de bias voltage is achieved. In addition to easy tuning, this technique offers circuit simplicity, wide dynamic range, high input and output impedances and low consumption. The transconductor is presented on both single-ended and fully-differential versions. A 3rd-order elliptical low-pass g(m)-C filter with a nominal roll-off frequency of 2MHz is used as one example for the many applications of the proposed transconductor. SPICE data describe circuits performances and filter tunabilily Passband is tuned at a rate of 2.36KHz/mV and good linearity is indicated by a 0.89% THD for an 800mV(p-p) balanced-driven input.
Resumo:
A CMOS low-voltage, wide-swing continuous-time current amplifier is presented. Exhibiting an open-loop architecture, the circuit is composed of transresistance and transconductance stages built upon triode-operating transistors. In addition to an extended dynamic range, the current gain can be programmed within good accuracy by a rapport involving only transistor geometries and tuning biases. Low temperature-drift on gain setting is then expected.In accordance with a 0.35 mum n-well CMOS fabrication process and a single 1.1 V-supply, a balanced current-amplifier is designed for a programmable gain-range of 6 - 34 dB and optimized with respect to dynamic range. Simulated results from PSPICE and Bsim3v3 models indicate, for a 100 muA(pp)-output current, a THD of 0.96 and 1.87% at 1 KHz and 100 KHz, respectively. Input noise is 120 pArootHz @ 10 Hz, with S/N = 63.2 dB @ 1%-THD. At maximum gain, total quiescent consumption is 334 muW. Measurements from a prototyped amplifier reveal a gain-interval of 4.8-33.1 dB and a maximum current swing of 120 muA(pp). The current-amplifier bandwidth is above 1 MHz.
Resumo:
A linearly-tunable ULV transconductor featuring excellent stability of the processed signal common-mode voltage upon tuning, critical for very-low voltage applications, is presented. Its employment to the synthesis of CMOS gm-C high-frequency and voiceband filters is discussed. SPICE data describe the filter characteristics. For a 1.3 V-supply, their nominal passband frequencies are 1.0 MHz and 3.78 KHz, respectively, with tuning rates of 12.52 KHz/mV and 0.16 KHz/m V, input-referred noise spectral density of 1.3 μV/Hz1/2 and 5.0μV/Hz1/2 and standby consumption of 0.87 mW and 11.8 μW. Large-signal distortion given by THD = 1% corresponds to a differential output-swing of 360 mVpp and 480 mVpp, respectively. Common-mode voltage deviation is less than 4 mV over tuning interval.
Resumo:
A CMOS memory-cell for dynamic storage of analog data and suitable for LVLP applications is proposed. Information is memorized as the gate-voltage of input-transistor of a gain-boosting triode-transconductor. The enhanced output-resistance improves accuracy on reading out the sampled currents. Additionally, a four-quadrant multiplication between the input to regulation-amplifier of the transconductor and the stored voltage is provided. Designing complies with a low-voltage 1.2μm N-well CMOS fabrication process. For a 1.3V-supply, CCELL=3.6pF and sampling interval is 0.25μA≤ ISAMPLE ≤ 0.75μA. The specified retention time is 1.28ms and corresponds to a charge-variation of 1% due to junction leakage @75°C. A range of MR simulations confirm circuit performance. Absolute read-out error is below O.40% while the four-quadrant multiplier nonlinearity, at full-scale is 8.2%. Maximum stand-by consumption is 3.6μW/cell.
Resumo:
A CMOS audio-equalizer based on a parallel-array of 2nd-order bandpass-sections is presented and realized with triode transconductors. It has a programmable 12db-boost/cut on each of its three decade-bands, easily achieved through the linear dependence of gm on VDS. In accordance with a 0.8μm n-well double-metal fabrication process, a range of simulations supports theoretical analysis and circuit performance at different boost/cut scenarios. For VDD=3.3V, fullboosting stand-by prover consumption is 1.05mW. THD=-42.61dB@1Vpp and may be improved by balanced structures. Thermal- and I/f-noise spectral densities are 3.2μV/Hz12 and 18.2μV/Hz12@20Hz, respectively, for a dynamic range of 52.3dB@1Vpp. The equalizer effective area is 2.4mm2. The drawback of the existing transmission-zero due to the feedthrough-capacitance of a triode input-device is also addressed. The proposed topology can be extended to the design of more complex graphic-equalizers and hearing-aids.
Resumo:
A low-voltage, low-power four-quadrant analog multiplier with optimized current-efficiency is presented. Its core corresponds to a pseudodifferential cascode, gain-boosting triode-transconductor. According to a low-voltage 1.2μm CMOS n-well process, operand differential-amplitudes are 1.0Vpp and 0.32Vpp for a 1.3V-supply. Common-mode voltages are properly chosen to maximize current-efficiency to 58%. Total quiescent dissipation is 260μW. A range of PSPICE simulation supports theoretical analysis. Excellent linearity is observed on dc characteristic. Assuming a ±0.5% mismatch on (W/L) and VTH THD at full-scale is 0.93% and 1.42%, for output frequencies of 1MHz and 10MHz, respectively.
Resumo:
A low-voltage, low-power OTA-C sinusoidal oscillator based on a triode-MOSFET transconductor is here discussed. The classical quadrature model is employed and the transconductor inherent nonlinear characteristic with input voltage is used as the amplitude-stabilization element. An external bias VTUNE linearly adjusts the oscillation frequency. According to a standard 0.8μm CMOS n-well process, a prototype was integrated, with an effective area of 0.28mm2. Experimental data validate the theoretical analysis. For a single 1.8V-supply and 100mV≤VTUNE≤250mV, the oscillation frequency fo ranges from 0.50MHz to 1.125MHz, with a nearly constant gain KVCO=4.16KHz/mV. Maximum output amplitude is 374mVpp @1.12MHz. THD is -41dB @321mVpp. Maximum average consumption is 355μW.