71 resultados para Toughened nylons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymeric fibrous scaffolds have been considered as replacements for load-bearing soft tissues, because of their ability to mimic the microstructure of natural tissues. Poor toughness of fibrous materials results in failure, which is an issue of importance to both engineering and medical practice. The toughness of fibrous materials depends on the ability of the microstructure to develop toughening mechanisms. However, such toughening mechanisms are still not well understood, because the detailed evolution at the microscopic level is difficult to visualize. A novel and simple method was developed, namely, a sample-taping technique, to examine the detailed failure mechanisms of fibrous microstructures. This technique was compared with in situ fracture testing by scanning electron microscopy. Examination of three types of fibrous networks showed that two different failure modes occurred in fibrous scaffolds. For brittle cracking in gelatin electrospun scaffolds, the random network morphology around the crack tip remained during crack propagation. For ductile failure in polycaprolactone electrospun scaffolds and nonwoven fabrics, the random network deformed via fiber rearrangement, and a large number of fiber bundles formed across the region in front of the notch tip. These fiber bundles not only accommodated mechanical strain, but also resisted crack propagation and thus toughened the fibrous scaffolds. Such understanding provides insight for the production of fibrous materials with enhanced toughness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymeric fibrous scaffolds have been considered as replacements for load-bearing soft tissues, because of their ability to mimic the microstructure of natural tissues. Poor toughness of fibrous materials results in failure, which is an issue of importance to both engineering and medical practice. The toughness of fibrous materials depends on the ability of the microstructure to develop toughening mechanisms. However, such toughening mechanisms are still not well understood, because the detailed evolution at the microscopic level is difficult to visualize. A novel and simple method was developed, namely, a sample-taping technique, to examine the detailed failure mechanisms of fibrous microstructures. This technique was compared with in situ fracture testing by scanning electron microscopy. Examination of three types of fibrous networks showed that two different failure modes occurred in fibrous scaffolds. For brittle cracking in gelatin electrospun scaffolds, the random network morphology around the crack tip remained during crack propagation. For ductile failure in polycaprolactone electrospun scaffolds and nonwoven fabrics, the random network deformed via fiber rearrangement, and a large number of fiber bundles formed across the region in front of the notch tip. These fiber bundles not only accommodated mechanical strain, but also resisted crack propagation and thus toughened the fibrous scaffolds. Such understanding provides insight for the production of fibrous materials with enhanced toughness. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sandwich panels with crushable foam cores have attracted significant interest for impulsive load mitigation. We describe a method for making a lightweight, energy absorbing, glass fiber composite sandwich structure and explore it is through thickness (out-of-plane) compressive response. The sandwich structure utilized corrugated composite cores constructed from delamination resistant 3D woven E-glass fiber textiles folded over triangular cross section prismatic closed cell, PVC foam inserts. The corrugated structure was stitched to 3D woven S2-glass fiber face sheets and infiltrated with a rubber toughened, impact resistant epoxy. The quasi-static compressive stress-strain response of the panels was experimentally investigated as a function of the strut width to length ratio and compared to micromechanical predictions. Slender struts failed by elastic (Euler) buckling which transitioned to plastic microbuckling as the strut aspect ratio increased. Good agreement was observed between experimental results and micromechanical predictions over the wide range of core densities investigated in the study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

众所周知,聚乙烯、聚丙烯因其良好的加工性能及价格相对低廉而得到了广泛应用,但刚性和韧性的不足限制了它们在工程领域的应用。因此,提高聚乙烯、聚丙烯的刚性和韧性就成为高分子科学界和工程界一重要研究课题。本论文尝试用玻璃珠增韧聚云烯、聚丙烯,并系统研究体系的结构和性能,得到的主要结果有:1.成功实现了玻璃珠对高密度聚乙烯的增韧。在刚性、热稳定性显著提高的同时,玻璃珠增韧的高密度聚乙烯仍保持着很高的低温缺口冲击强度(-10℃,玻璃珠含量48wt%时,冲击强度为16KJ/m2)。2.得到了玻璃珠增韧高密度聚乙烯在脆韧转变点临界粒子间距(IDc)与温度的关系。这是第一条无机刚性粒子增韧热塑性聚合物体系的工Dc与温度的关系曲线。结果表明与弹性体增韧热塑性聚合物体系类似,工Dc随温度的升高而非线性增大。3.虽然没能在低温和常温下实现玻璃珠对聚丙烯的增韧,但是在较高的温度下仍发现了玻璃珠对聚丙烯有明显的增韧效果,且体系的脆韧转变温度随玻璃珠含量的增加而降低。4.用偏光显微镜(PLM)成功跟踪了所用聚丙烯p晶转变为仪晶的全过程。结果表明β晶能重结晶成以晶,重结晶生成的以晶熔点要比最初生成的a晶高五度左右。5.当聚丙烯存在两种晶型(a和β)时,实验发现聚丙烯/玻璃珠共混体系出现模量随玻璃珠含量增加先下降后上升的反常现象。进一步研究结果揭示该反常现象是玻璃珠填充和提高β晶形成能力二者竞争的结果6. 实验发现聚丙烯的β晶含量与添加玻璃珠的尺寸、含量及热处理温度有关。同样玻璃珠含量下粒子尺寸小有利于β晶的生成;对一定组成的共混物,存在一个最佳β晶形成温度。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Blocked isocyanate-functionalized polyolefins have great potential for use in semicrystalline polymer blends to obtain toughened polymers. In this study, poly(butylene terephthalate) (PBT) was blended with allyl N-[2-methyl-4-(2-oxohexahydroazepine-1 -carboxamido)phenyl] carbamate-functionalized poly(ethylene octene) (POE-g-AMPC).RESULTS: New peaks at 2272 and 1720 cm(-1), corresponding to the stretching vibrations of NCO and the carbonyl of NH-CO-N, respectively, in AMPC, appeared in the infrared spectrum of POE-g-AMPC. Both rheological and X-ray photoelectron spectroscopy results indicated a new copolymer was formed in the reactive blends. Compared to uncompatibilized PBT/POE blends, smaller dispersed particle sizes with narrower distribution were found in the compatibilized PBT/POE-g-AMPC blends. There was a marked increase in impact strength by about 10-fold over that of PBT/POE blends with the same rubber content and almost 30-fold higher than that of pure PBT when the POE-g-AMPC content was 25 wt%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La2Zr2O7 (LZ) is a promising thermal barrier coating material for the high-temperature applications, which could be significantly toughened by the YAG nanopowder incorporated into the matrix. The composites of xYAG/(1-x)LZ (Y=10, 15, 20 vol. %, LZ-x-YAG) were densified by means of high-pressure sintering (HPS) under a pressure of 4.5 GPa at 1650 degrees C for 5 min, by which a high-relative density above 93% could be obtained. The morphologies of the fractured surfaces were investigated by the scanning electron microscope, and the fracture toughness and Vicker's-hardness of the composites were evaluated by the microindentation. The grain size of the LZ matrix drops significantly with the addition of YAG nanoparticles and the fracture type changes from the intergranular to a mixture type of the transgranular and intergranular in the nanocomposites. The LZ-20-YAG nanocomposite has a fracture toughness of 1.93 MPa m(1/2), which is obviously higher than that of the pure LZ (1.57 MPa m(1/2)), and the toughening mechanism is discussed in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isothermal and non-isothermal crystallization processes of nylon 1212 were investigated by polarized optical microscopy. The crystal growth rates of nylon 1212 measured in isothermal conditions at temperatures ranged from 182 to 132 degreesC are well comparable with those measured by non-isothermal procedures (cooling rates ranged from 0.5 to 11 degreesC/min). The kinetic data were examined with the Hoffman-Lauritzen nucleation theory on the basis of the obtained values of the thermodynamic parameters of nylon 1212. The classical regime I --> II and regime II --> III transitions occur at the temperatures of 179 and 159 degreesC, respectively. The crystal growth parameters were calculated with (100) plane assumed to be the growth plane. The regime I --> II --> III transition is accompanied by a morphological transition from elliptical-shaped structure to banded spherulite and then non-banded spherulite. The development of morphology during isothermal and non-isothermal processes shows a good agreement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isothermal and non-isothermal melt-crystallization kinetics of nylon 1212 were investigated by differential scanning calorimetry. Primary and secondary crystallization behaviors were analysed based on different approaches. The results obtained suggested that primary crystallization under isothermal conditions involves three-dimensional spherulite growth initiated by athermal nucleation, while under non-isothermal conditions, the mechanism of primary crystallization is more complex. Secondary crystallization displays a lower-dimensional crystal growth, both in the isothermal and non-isothermal processes. The crystallite morphology of nylon 1212, isothermally crystallized at various temperatures, was observed by polarized optical microscopy. The activation energies of crystallization under isothermal and non-isothermal conditions were also calculated based on different approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isothermal crystallization, subsequent melting behavior and non-isothermal crystallization of nylon 1212 samples have been investigated in the temperature range of 160-171 degreesC using a differential scanning calorimeter (DSC). Subsequent DSC scans of isothermally crystallized samples exhibited three melting endotherms. The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and non-isothermal crystallizations of nylon 1212. The Avrami exponent n was evaluated, and was found to be in the range of 1.56-2.03 for isothermal crystallization, and of 2.38-3.05 for non-isothermal crystallization. The activation energies (DeltaE) were determined to be 284.5 KJ/mol and 102.63 KJ/mol, respectively, for the isothermal and non-isothermal crystallization processes by the Arrhenius' and the Kissinger's methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The brittle-ductile transition (BDT) of particle toughened polymers was extensively studied in terms of morphology, strain rate, and temperature. The calculation results showed that both the critical interparticle distance (IDc) and the brittle-ductile transition temperature (T-BD) of polymers were a function of strain rate. The IDc reduced nonlinearly with increasing strain rate, whereas T-BD increased considerably with increasing strain rate. The effects of temperature and plasticizer concentration on BDT were discussed using a percolation model. The results were in agreement with the experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A perfect single crystal of nylon-2,14 was prepared from 0.02% (w/v) 1,4-butanediol solution by a "self-seeding" technique and isothermal crystallization at 120 and 145 degreesC. The morphology and structure features were examined by transmission electron microscopy with both image and diffraction modes, atomic force microscopy, and wide-angle X-ray diffraction (WAXD). The nylon-2,14 single crystal grown from 1,4-butanediol at 145 degreesC inhabited a lathlike shape with a lamellar thickness of about 9 nm. Electron diffraction and WAXD data indicated that nylon-2,14 crystallized in a triclinic system with lattice dimensions a = 0.49 nm, b = 0.51 nm, c = 2.23 nm, alpha = 60.4degrees, beta = 77degrees, and gamma = 59degrees. The crystal structure is different from that of nylon-6,6 but similar to that of other members of nylon-2Y.