970 resultados para Tooth desmineralization
Resumo:
Aim: The aim of this study was to investigate the factors associated with continued significant tooth loss due to periodontal reasons during maintenance following periodontal therapy in a specialist periodontal practice in Norway.
Material and Methods: A case-control design was used. Refractory cases were patients who lost multiple teeth during a maintenance period of 13.4 (range 8-19) years following definitive periodontal treatment in a specialist practice. Controls were age- and gender-matched maintenance patients from the same practice. Characteristics and treatment outcomes were assessed, and all teeth classified as being lost due to periodontal disease during follow-up were identified. The use of implants in refractory cases and any complications relating to such a treatment were recorded.
Results: Only 27 (2.2%) patients who received periodontal treatment between 1986 and 1998 in a specialist practice met the criteria for inclusion in the refractory to treatment group. Each refractory subject lost 10.4 (range 4-16) teeth, which represented 50% of the teeth present at baseline. The rate of tooth loss in the refractory group was 0.78 teeth per year, which was 35 times greater than that in the control group. Multivariate analysis indicated that being in the refractory group was predicted by heavy smoking (p=0.026), being stressed (p=0.016) or having a family history of periodontitis (p=0.002). Implants were placed in 14 of the refractory patients and nine (64%) of these lost at least one implant. In total, 17 (25%) of the implants placed in the refractory group were lost during the study period.
Conclusions: A small number of periodontal maintenance patients are refractive to treatment and go on to experience significant tooth loss. These subjects also have a high level of implant complications and failure. Heavy smoking, stress and a family history of periodontal disease were identified as factors associated with a refractory outcome.
Resumo:
Films containing 20% w/w chlorhexidine base (particle size 63-125 mu m) in poly(epsilon-caprolactone), MW 35 000-45 000, were prepared by solvent evaporation and sections attached to the mesio-lingual and mesio-buccal surfaces of the lower first molar in healthy volunteers. Saliva (
Resumo:
Objectives: To determine, by means of static fracture testing the effect of the tooth preparation design and the elastic modulus of the cement on the structural integrity of the cemented machined ceramic crown-tooth complex.
Methods: Human maxillary extracted premolar teeth were prepared for all-ceramic crowns using two preparation designs; a standard preparation in accordance with established protocols and a novel design with a flat occlusal design. All-ceramic feldspathic (Vita MK II) crowns were milled for all the preparations using a CAD/CAM system (CEREC-3). The machined all-ceramic crowns were resin bonded to the tooth structure using one of three cements with different elastic moduli: Super-Bond C&B, Rely X Unicem and Panavia F 2.0. The specimens were subjected to compressive force through a 4 mm diameter steel ball at a crosshead speed of 1 mm/min using a universal test machine (Loyds Instrument Model LRX.). The load at the fracture point was recorded for each specimen in Newtons (N). These values were compared to a control group of unprepared/unrestored teeth.
Results: There was a significant difference between the control group, with higher fracture strength, and the cemented samples regardless of the occlusal design and the type of resin cement. There was no significant difference in mean fracture load between the two designs of occlusal preparation using Super-Bond C&B. For the Rely X Unicem and Panavia F 2.0 cements, the proposed preparation design with a flat occlusal morphology provides a system with increased fracture strength.
Significance: The proposed novel flat design showed less dependency on the resin cement selection in relation to the fracture strength of the restored tooth. The choice of the cement resin, with respect to its modulus of elasticity, is more important in the anatomic design than in the flat design. © 2013 Academy of Dental Materials.
Resumo:
The effect of preparation design and the physical properties of the interface lute on the restored machined ceramic crown-tooth complex are poorly understood. The aim of this work was to determine, by means of three-dimensional finite element analysis (3D FEA) the effect of the tooth preparation design and the elastic modulus of the cement on the stress state of the cemented machined ceramic crown-tooth complex. The three-dimensional structure of human premolar teeth, restored with adhesively cemented machined ceramic crowns, was digitized with a micro-CT scanner. An accurate, high resolution, digital replica model of a restored tooth was created. Two preparation designs, with different occlusal morphologies, were modeled with cements of 3 different elastic moduli. Interactive medical image processing software (mimics and professional CAD modeling software) was used to create sophisticated digital models that included the supporting structures; periodontal ligament and alveolar bone. The generated models were imported into an FEA software program (hypermesh version 10.0, Altair Engineering Inc.) with all degrees of freedom constrained at the outer surface of the supporting cortical bone of the crown-tooth complex. Five different elastic moduli values were given to the adhesive cement interface 1.8 GPa, 4 GPa, 8 GPa, 18.3 GPa and 40 GPa; the four lower values are representative of currently used cementing lutes and 40 GPa is set as an extreme high value. The stress distribution under simulated applied loads was determined. The preparation design demonstrated an effect on the stress state of the restored tooth system. The cement elastic modulus affected the stress state in the cement and dentin structures but not in the crown, the pulp, the periodontal ligament or the cancellous and cortical bone. The results of this study suggest that both the choice of the preparation design and the cement elastic modulus can affect the stress state within the restored crown-tooth complex.