999 resultados para Tomographic images
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: This study has two aims: 1) to evaluate the apical transportation of the Wizard CD Plus and ProTaper Universal after preparation of simulated root canals; 2) to compare, with Adobe Photoshop, the ability of a new software (Regeemy) in superposing and subtracting images. Material and Methods: Twenty five simulated root canals in acrylic-resin blocks (with 20 degrees curvature) underwent cone beam computed tomography before and after preparation with the rotary systems (70 kVp, 4 mA, 10 s and with the 8x8 cm FoV selection). Canals were prepared up to F2 (ProTaper) and 24.04 (Wizard CD Plus) instruments and the working length was established to 15 mm. The tomographic images were imported into iCAT Vision software and CorelDraw for standardization. The superposition of pre- and post-instrumentation images from both systems was performed using Regeemy and Adobe Photoshop. The apical transportation was measured in millimetres using Image J. Five acrylic resin blocks were used to validate the superposition achieved by the software. Student's t-test for independent samples was used to evaluate the apical transportation achieved by the rotary systems using each software individually. Student's t-test for paired samples was used to compare the ability of each software in superposing and subtracting images from one rotary system per time. Results: The values obtained with Regeemy and Adobe Photoshop were similar to rotary systems (P>0.05). ProTaper Universal and Wizard CD Plus promoted similar apical transportation regardless of the software used for image's superposition and subtraction (P>0.05). Conclusion: Wizard CD Plus and ProTaper Universal promoted little apical transportation. Regeemy consists in a feasible software to superpose and subtract images and appears to be an alternative to Adobe Photoshop.
Resumo:
Contrast enhancement enables the verification of several pathological conditions that lead to vascular changes and/or breakdown of the blood-brain barrier. Examples of diseases that cause these disorders are: neoplastic diseases, vascular communications, active inflammation and cerebral ischemia. Several contrast enhancements located peripherically to cerebral lobes, in the topography of brain sulci and gyri, were identified on tomographic scan of twelve healthy cats that had their health confirmed through history, general and neurologic physical examination and polymerase chain reaction for feline leukemia (FeLV) and immunodeficiency (FIV) virus. This study aims to describe the tomographic contrast enhancement findings, which showed an identical appearance to the pia mater and arachnoid enhancement, also called leptomeninges. This finding is generally considered related to leptomeningeal diseases such as meningitis and neoplastic disease. However, in dogs, the leptomeningeal enhancement has already been described in healthy animals. This finding has a great importance in the interpretation of tomographic images of these animals since, so far, in the presence of these enhancements, meningeal disorders were suggested. Thus, the verification of other tomographic findings and the combination with other diagnostic methods are of great importance for the diagnosis of leptomeningeal disease.
Resumo:
The Biosusceptometry AC (BAC) is a research tool that has been extensively explored by the group Biomagnetism IBB-UNESP for monitoring of the gastrointestinal tract, its response to a known drug or in vivo performance of solid dosage forms. During this period the BAC, which has the characteristics of high sensitivity and low cost, has been developed primarily for recording signals contraction of activity and traffic human gastrointestinal tract. With the possibility of producing images with this instrumentation, it was possible to evaluate different situations in vitro and in vivo for physiological studies and pharmaceuticals. Considering the good performance of this system to produce planar images, the first aim of the BAC system tomography (TBAC) was to evaluate the system performance of BAC to produce tomographic images of phantoms ferromagnetic for a single channel system. All these applications were only possible because of their sensitivity to materials of high magnetic suscepitibility as ferrite, which allow to produce an electrical signal proportional to the variation of the magnetic flux generated by the presence of magnetic marker next to a first-order gradiometer. Measuring this variation at various points was possible to generate planar images that recently came to be produced in systems with multiple detectors, said multi-channels. From planar images, also producing tomographic images of simulators BAC bars in a system of 13 channels using only the center channel, with good results when applied to simple objects as one and two bars. When testing the resolution of the system with more elaborate forms the quality and resolution of images reconstructed is not satisfactory, which would be solved by increasing the spatial sampling rate and hence the acquisition time. The present system works with an acquisition time of about five hours. Whereas this system will be applied for in vivo experiments, the acquisition time became a ...
Resumo:
Nuclear medicine is a medical specialty related to imagery that deals with imaging techniques, diagnosis and therapy, allowing observing the physiological state of tissues noninvasively by marking the molecules participating of these physiological processes with radioactive isotopes, thus creating the called radionuclides. The image of a radionuclide is one of the most important applications of radioactivity in nuclear medicine. The equipment’s of nuclear medicine imaging use the principle of radiation detection, turning it into an electrical signal which, through specific algorithms, allows forming tomographic images that provide information about the functional status of organs. New detection systems have been developed for tomographic acquisitions using solid state detectors. These devices use crystals of cadmium zinc telluride (CdZnTe). Some of the advantages of this detector are a significant improvement of signal to noise ratio, the increased spectral and spatial resolution, which in sum, result in greater clarity of the images obtained, opening new perspectives for imaging protocols previously unattainable. In contrast, all other gamma-cameras equipped with vacuum tubes have remained relatively unchanged for nearly fifty years. In these gamma-cameras, the images are obtained using two steps significantly less efficient: the gamma rays are converted to light through a first device, and then the light is converted into an electrical signal through a second device. One of functions the Medical Physicist is related to the quality control of equipment. This control ensures that the information and images provided are true and thus credible to be used in medical reports. To perform this type of analysis the physicist must understand the performance characteristics and operation of all equipment of the department concerned; besides, in the absence of specific legislation, proposing...(Complete abstract click electronic access below)
Resumo:
Pós-graduação em Cirurgia Veterinária - FCAV
Resumo:
Pós-graduação em Cirurgia Veterinária - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to use the finite element method to evaluate the distribution of stresses and strains on the local bone tissue adjacent to the miniplate used for anchorage of orthodontic forces. Methods: A 3-dimensional model composed of a hemimandible and teeth was constructed using dental computed tomographic images, in which we assembled a miniplate with fixation screws. The uprighting and mesial movements of the mandibular second molar that was anchored with the miniplate were simulated. The miniplate was loaded with horizontal forces of 2, 5, and 15 N. A moment of 11.77 N.mm was also applied. The stress and strain distributions were analyzed, and their correlations with the bone remodeling criteria and miniplate stability were assessed. Results: When orthodontic loads were applied, peak bone strain remained within the range of bone homeostasis (100-1500 mu m strain) with a balance between bone formation and resorption. The maximum deformation was found to be 1035 mu m strain with a force of 5 N. At a force of 15 N, bone resorption was observed in the region of the screws. Conclusions: We observed more stress concentration around the screws than in the cancellous bone. The levels of stress and strain increased when the force was increased but remained within physiologic levels. The anchorage system of miniplate and screws could withstand the orthodontic forces, which did not affect the stability of the miniplate.
Resumo:
The objective of this study was to evaluate the remodeling of autologous and homologous bone grafts in humans, using tomographic images. For this, CT images from 10 patients (5 treated with autologous bone grafts and 5 treated with homologous bone grafts), made previously to the grafting procedures, and 14 and 180 days post operatory were evaluated regarding to bone height, width, and density, in a total of 19 bone blocks, 10 homologous and 9 autologous. Results showed similarities between the two tested materials regarding bone width and density. It can be concluded that the homologous bone presented, in a tomographic approach, after 180 days of follow-up, characteristics which can corroborate its use as a bone graft material, providing and sustaining a good bone volume for oral rehabilitation with dental implants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Owing to a lack of symptoms and difficult visualization in routine intraoral radiographs, diagnosis of external root resorptions can be challenging. Aim: The goal of this study was to compare two image acquisition methods, intraoral radiographs and cone beam computed tomography (CBCT), in the diagnosis of external resorption. Material and Methods: Thirty-four maxillary and mandibular bicuspids were divided into three groups. Perforations measuring 0.3 and 0.6 mm in diameter and 0.15 and 0.3 mm in depth, respectively, were made on the lingual root surfaces in thirty teeth, and four were used as controls. Next, teeth were mounted on an apparatus and radiographed at mesial, distal, and orthoradial angulations. CBCT images were also taken. The analysis of the intraoral radiographic and tomographic images was carried out by two experts using standardized scores. Data were then compared statistically. Results: A strong agreement between the examiners was observed in both diagnosis methods, the intraoral radiographic (r = 0.93) and the tomographic analysis (r = 1.0). Tomography had higher statistically significant detection values than intraoral radiography (P < 0.05). In intraoral radiographs, the detection was significantly greater (P < 0.05) in the mandibular bicuspids, compared with their maxillary counterparts. The ability to detect 0.6-mm perforations by intraoral radiography was significantly higher than that of 0.3-mm perforations (P < 0.05). Conclusion: Cone beam computed tomography showed better diagnostic ability compared with intraoral radiography, regardless of the tooth or the dimensions of the resorption evaluated.
Resumo:
Every seismic event produces seismic waves which travel throughout the Earth. Seismology is the science of interpreting measurements to derive information about the structure of the Earth. Seismic tomography is the most powerful tool for determination of 3D structure of deep Earth's interiors. Tomographic models obtained at the global and regional scales are an underlying tool for determination of geodynamical state of the Earth, showing evident correlation with other geophysical and geological characteristics. The global tomographic images of the Earth can be written as a linear combinations of basis functions from a specifically chosen set, defining the model parameterization. A number of different parameterizations are commonly seen in literature: seismic velocities in the Earth have been expressed, for example, as combinations of spherical harmonics or by means of the simpler characteristic functions of discrete cells. With this work we are interested to focus our attention on this aspect, evaluating a new type of parameterization, performed by means of wavelet functions. It is known from the classical Fourier theory that a signal can be expressed as the sum of a, possibly infinite, series of sines and cosines. This sum is often referred as a Fourier expansion. The big disadvantage of a Fourier expansion is that it has only frequency resolution and no time resolution. The Wavelet Analysis (or Wavelet Transform) is probably the most recent solution to overcome the shortcomings of Fourier analysis. The fundamental idea behind this innovative analysis is to study signal according to scale. Wavelets, in fact, are mathematical functions that cut up data into different frequency components, and then study each component with resolution matched to its scale, so they are especially useful in the analysis of non stationary process that contains multi-scale features, discontinuities and sharp strike. Wavelets are essentially used in two ways when they are applied in geophysical process or signals studies: 1) as a basis for representation or characterization of process; 2) as an integration kernel for analysis to extract information about the process. These two types of applications of wavelets in geophysical field, are object of study of this work. At the beginning we use the wavelets as basis to represent and resolve the Tomographic Inverse Problem. After a briefly introduction to seismic tomography theory, we assess the power of wavelet analysis in the representation of two different type of synthetic models; then we apply it to real data, obtaining surface wave phase velocity maps and evaluating its abilities by means of comparison with an other type of parametrization (i.e., block parametrization). For the second type of wavelet application we analyze the ability of Continuous Wavelet Transform in the spectral analysis, starting again with some synthetic tests to evaluate its sensibility and capability and then apply the same analysis to real data to obtain Local Correlation Maps between different model at same depth or between different profiles of the same model.