944 resultados para Titanium dioxide -- Synthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of macrophages in the clearance of particles with diameters less than 100 nm (ultrafine or nanoparticles) is not well established, although these particles deposit highly efficiently in peripheral lungs, where particle phagocytosis by macrophages is the primary clearance mechanism. To investigate the uptake of nanoparticles by lung phagocytes, we analyzed the distribution of titanium dioxide particles of 20 nm count median diameter in macrophages obtained by bronchoalveolar lavage at 1 hour and 24 hours after a 1-hour aerosol inhalation. Differential cell counts revealing greater than 96% macrophages and less than 1% neutrophils and lymphocytes excluded inflammatory cell responses. Employing energy-filtering transmission electron microscopy (EFTEM) for elemental microanalysis, we examined 1,594 macrophage profiles in the 1-hour group (n = 6) and 1,609 in the 24-hour group (n = 6). We found 4 particles in 3 macrophage profiles at 1 hour and 47 particles in 27 macrophage profiles at 24 hours. Model-based data analysis revealed an uptake of 0.06 to 0.12% ultrafine titanium-dioxide particles by lung-surface macrophages within 24 hours. Mean (SD) particle diameters were 31 (8) nm at 1 hour and 34 (10) nm at 24 hours. Particles were localized adjacent (within 13-83 nm) to the membrane in vesicles with mean (SD) diameters of 592 (375) nm at 1 hour and 414 (309) nm at 24 hours, containing other material like surfactant. Additional screening of macrophage profiles by conventional TEM revealed no evidence for agglomerated nanoparticles. These results give evidence for a sporadic and rather unspecific uptake of TiO(2)-nanoparticles by lung-surface macrophages within 24 hours after their deposition, and hence for an insufficient role of the key clearance mechanism in peripheral lungs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research focused on the to modification of the surface structure of titanium implants with nanostructured morphology of TiO2 nanotubes and studied the interaction of nanotubes with osteoblast cells to understand the parameters that affect the cell growth. The electrical, mechanical, and structural properties of TiO2 nanotubes were characterized to establish a better understanding on the properties of such nanoscale morphological structures. To achieve the objectives of this research work I transformed the titanium and its alloys, either in bulk sheet form, bulk machined form, or thin film deposited on another substrate into a surface of titania nanotubes using a low cost and environmentally friendly process. The process requires only a simple electrolyte, low cost electrode, and a DC power supply. With this simple approach of scalable nanofabrication, a typical result is nanotubes that are each approximately 100nm in diameter and have a wall thickness of about 20nm. By changing the fabrication parameters, independent nanotubes can be fabricated with open volume between them. Titanium in this form is termed onedimensional since electron transport is narrowly confined along the length of the nanotube. My Ph.D. accomplishments have successfully shown that osteoblast cells, the cells that are the precursors to bone, have a strong tendency to attach to the inside and outside of the titanium nanotubes onto which they are grown using their filopodia – cell’s foot used for locomotion – anchored to titanium nanotubes. In fact it was shown that the cell prefers to find many anchoring sites. These sites are critical for cell locomotion during the first several weeks of maturity and upon calcification as a strongly anchored bone cell. In addition I have shown that such a surface has a greater cell density than a smooth titanium surface. My work also developed a process that uses a focused and controllably rastered ion beam as a nano-scalpel to cut away sections of the osteoblast cells to probe the attachment beneath the main cell body. Ultimately the more rapid growth of osteoblasts, coupled with a stronger cell-surface interface, could provide cost reduction, shorter rehabilitation, and fewer follow-on surgeries due to implant loosening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparison has been made between the spectroscopic properties of the laser dye rhodamine 6G (R6G) in mesostructured titanium dioxide (TiO2) and in ethanol. Steady-state excitation and emission techniques have been used to probe the dye-matrix interactions. We show that the TiO2-nanocomposite studied is a good host for R6G, as it allows high dye concentrations, while keeping dye molecules isolated, and preventing aggregation. Our findings have important implications in the context of solid state dye-lasers and microphotonic device applications. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dimethyl methyl phosphonate (DMMP), diethyl methyl phosphonate (DEMP), and fluorophenols undergo rapid decomposition upon TiO$\sb2$ catalyzed photooxidation in air saturated aqueous solution. The degradation rates of DMMP were determined over a range of temperatures, under solar and artificial irradiation with and without simultaneous sonication. Solar illumination is effective for the degradation and the use of low energy of sonication increases the rate of mineralization. The surface area and the type of TiO$\sb2$ dramatically affect the photoactivity of the catalyst. A number of intermediate products are formed and ultimately oxidized to phosphate and carbon dioxide. Possible reaction mechanisms and pathways for DMMP and DEMP are proposed. The Langmuir-Hinshelwood kinetic parameters for the photocatalysis of fluorophenols suggest modestly different reactivity for each isomer. The adsorption constant is largest for the ortho isomer consistent with the adsorption onto TiO$\sb2$ through both hydroxyl and fluoride groups to form a chelated type structure. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two studies were performed to obtain fundamental mechanistic information on the TiO2 catalyzed degradation of organic substrates irradiated at 350 nm in dilute aqueous solutions under oxygenated conditions: (a) The photodecomposition of methyl tert-butyl ether (MTBE) and its intermediate products from β-oxidation, 2-methoxy-2-methylpropanol and 2-methoxy-2-methylpropanol. (b) The photodecomposition of two haloethers, bis-(2-chloroethyl) ether, and bis-(2-chloroisopropyl) ether. Controls were carried out throughout the two studies in the absence of light, and without the semiconductor in order to evaluate the role of photolysis. ^ The syntheses of proposed intermediate products, 2-methoxy-2-methylpropanol, 2-methoxy-2-methylpropanal, 2-methoxy-2-methylpropanoic acid, 2-chloroethyl formate, and 1-chloro-2-propyl acetate, were performed. The formation of these products in the titanium dioxide photocatalytic oxidation of the substrates of interest was also confirmed. TiO2 photocatalysis is a very effective method for the mineralization of aliphatic ethers and their primary oxidation products. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dimethyl methyl phosphonate (DMMP), diethyl methyl phosphonate (DEMP), and fluorophenols undergo rapid decomposition upon TiO2 catalyzed photooxidation in air saturated aqueous solution. The degradation rates of DMMP were determined over a range of temperatures, under solar and artificial irradiation with and without simultaneous sonication. Solar illumination is effective for the degradation and the use of low energy of sonication increases the rate of mineralization. The surface area and the type of TiO2 dramatically affect the photoactivity of the catalyst. A number of intermediate products are formed and ultimately oxidized to phosphate and carbon dioxide. Possible reaction mechanisms and pathways for DMMP and DEMP are proposed. The Langmuir- Hinshelwood kinetic parameters for the photocatalysis of fluorophenols suggest modestly different reactivity for each isomer. The adsorption constant is largest for the ortho isomer consistent with the adsorption onto TiO2 through both hydroxyl and fluoride groups to form a chelated type structure.