858 resultados para Titanium casting


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium is a metallic element known by several attractive characteristics, such as biocompatibility, excellent corrosion resistance and high mechanical resistance. It is widely used in Dentistry, with high success rates, providing a favorable biological response when in contact with live tissues. Therefore, the objective of this study was to describe the different uses of titanium in Dentistry, reviewing its historical development and discoursing about its state of art and future perspective of its utilization. A search in the MEDLINE/PubMed database was performed using the terms 'titanium', 'dentistry' and 'implants'. The title and abstract of articles were read, and after this first screening 20 articles were selected and their full-texts were downloaded. Additional text books and manual search of reference lists within selected articles were included. Correlated literature showed that titanium is the most used metal in Implantology for manufacturing osseointegrated implants and their systems, with a totally consolidated utilization. Moreover, titanium can be also employed in prosthodontics to obtain frameworks. However, problems related to its machining, casting, welding and ceramic application for dental prosthesis are still limiting its use. In Endodontics, titanium has been used in association to nickel for manufacturing rotatory instruments, providing a higher resistance to deformation. However, although the different possibilities of using titanium in modern Dentistry, its use for prostheses frameworks still needs technological improvements in order to surpass its limitations. © 2012 Indian Prosthodontic Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dental implants have increased the use of titanium and titanium alloys in prosthetic applications. Whitening toothpastes with peroxides are available for patients with high aesthetic requirements, but the effect of whitening toothpastes on titanium surfaces is not yet known, although titanium is prone to fluoride ion attack. Thus, the aim of the present study was to compare Ti-5Ta alloy to cp Ti after toothbrushing with whitening and conventional toothpastes. Ti-5Ta (%wt) alloy was melted in an arc melting furnace and compared with cp Ti. Disks and toothbrush heads were embedded in PVC rings to be mounted onto a toothbrushing test apparatus. A total of 260,000 cycles were carried out at 250 cycles/minute under a load of 5 N on samples immersed in toothpaste slurries. Surface roughness and Vickers microhardness were evaluated before and after toothbrushing. One sample of each material/toothpaste was analyzed by Scanning Electron Microscopy (SEM) and compared with a sample that had not been submitted to toothbrushing. Surface roughness increased significantly after toothbrushing, but no differences were noted after toothbrushing with different toothpastes. Toothbrushing did not significantly affect sample microhardness. The results suggest that toothpastes that contain and those that do not contain peroxides in their composition have different effects on cp Ti and Ti-5Ta surfaces. Although no significant difference was noted in the microhardness and roughness of the surfaces brushed with different toothpastes, both toothpastes increased roughness after toothbrushing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the tensile strength, elongation, microhardness, microstructure and fracture pattern of various metal ceramic alloys cast under different casting conditions. Two Ni-Cr alloys, Co-Cr and Pd-Ag were used. The casting conditions were as follows: electromagnetic induction under argon atmosphere, vacuum, using blowtorch without atmosphere control. For each condition, 16 specimens, each measuring 25 mm long and 2.5 mm in diameter, were obtained. Ultimate tensile strength (UTS) and elongation (EL) tests were performed using a Kratos machine. Vickers Microhardness (VM), fracture mode and microstructure were analyzed by SEM. UTS, EL and VM data were statistically analyzed using ANOVA. For UTS, alloy composition had a direct influence on casting condition of alloys (Wiron 99 and Remanium CD), with higher values shown when cast with Flame/Air (p < 0.05). The factors "alloy" and "casting condition" influenced the EL and VM results, generally presenting opposite results, i.e., alloy with high elongation value had lower hardness (Wiron 99), and casting condition with the lowest EL values had the highest VM values (blowtorch). Both factors had significant influence on the properties evaluated, and prosthetic laboratories should select the appropriate casting method for each alloy composition to obtain the desired property.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statement of problem. Coatings of zirconite, Y2O3 or ZrO2 on wax patterns before investing in phosphate-bonded investments have been recommended to reduce the reaction layer in titanium castings, but they are not easily obtainable. Spinel-based investments are relatively stable with molten titanium and could be used as coatings to improve the quality of castings made with those investments. Purpose. The purpose of this study was to evaluate the effect of pattern coating with a commercial spinel-based investment before investing in 1 of 3 phosphate-bonded investments on the marginal coping fit and surface roughness of commercially pure titanium castings. Material and methods. Ten square acrylic resin patterns (12 x 12 x 2 mm) per group were invested in the phosphate-bonded investments Rematitan Plus (RP), Rema Exakt (RE), and Castorit Super C (CA) with or without a coating of the spinel-based investment, Rematitan Ultra (RU). After casting, the specimens were cleaned and the surface roughness was measured with a profilometer. Copings for dental implants with conical abutment were invested, eliminated, and cast as previously described. The copings were cleaned and misfit was measured with a profile projector (n=10). For both tests, the difference between the mean value of RU only and each value of the phosphate-bonded investment was calculated, and the data were analyzed by 2-way ANOVA and Tukey's HSD test (alpha=.05). In addition, the investment roughness was measured in bar specimens (30 x 10 x 10 mm), and the data (n=10) were analyzed by 1-way ANOVA and Tukey's HSD post hoc test (alpha=.05). Results. Two-way ANOVA for casting surface roughness was significant because of the investment, the coating technique, and the interaction between variables. One-way ANOVA was performed to prove the interaction term, and Tukey's post hoc test showed that RP with coating had the lowest mean, while RP had the highest. CA with coating was not different from RP with coating or CA without coating. RE with coating was similar to CA, while RE was different from all groups. For coping marginal fit, the 2-way ANOVA was significant for the investment, the coating technique, and the interaction between variables. The interaction was analyzed by1-way ANOVA and Tukey's HSD test that showed no significant difference among the coated groups, which had better marginal fit than the groups without coating. Among the groups without coating, CA had significant lower marginal misfit than RP, while RE was not different from CA and RP. For the investment surface roughness, the 1-way ANOVA was significant. CA and RU were smoother than RE and RP (P<.001). Conclusions. The coating technique improved the quality of castings fabricated with phosphate-bonded investments. (J Prosthet Dent 2012;108:51-57)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different types of titanium-alloys instead of CoCr-alloys have been tested as material for the framework of removable partial dentures (RPD). Adequate casting and processing techniques have been developed which enable to fabricate frameworks of complex designs and the problem limits porosity. This opened new possibilities for the use of titanium-alloys with improved properties (E-module). The aim of this study was to summarise the use of titanium in removable prosthodontics and to evaluate prospectively the use of the Ti6A17Nb-alloy for RPDs in a small group of patients. Two identically designed RPDs from CoCr-alloy (remanium GM 800+) and Ti6A17Nb-alloy (girotan L) were produced for ten patients. They had to wear each RPD during six months, first the CoCr-RPD and then the Ti6A17Nb-RPD. A questionnaire (visual analogue scale = VAS) was completed by the patients after one, three and six months of function for each RPD. Prosthetic complications and service needed were recorded. After the end of the entire observation period of twelve months, the patients remained with the Ti6A17Nb-RPD and answered the questionnaire after another six months. All parameters regarding the design of the RPDs were positively estimated by the dentist. Minimal, not significant differences were noted by the patients concerning comfort, stability and retention (VAS). Clinically, no differences in technical aspects or regarding biological complications were observed after six-months periods. The Ti6A17Nb-alloy (girotan L) for the framework of RPDs was judged by patients and professionals to be equivalent to RPDs made from CoCr-alloy. No differences in material aspects could objectively be observed. The Ti6A17Nb-alloy can be beneficial for patients with allergies or incompatibility with one or several components of the CoCr-alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE The cost-effectiveness of cast nonprecious frameworks has increased their prevalence in cemented implant crowns. The purpose of this study was to assess the effect of the design and height of the retentive component of a standard titanium implant abutment on the fit, possible horizontal rotation and retention forces of cast nonprecious alloy crowns prior to cementation. MATERIALS AND METHODS Two abutment designs were examined: Type A with a 6° taper and 8 antirotation planes (Straumann Tissue-Level RN) and Type B with a 7.5° taper and 1 antirotation plane (SICace implant). Both types were analyzed using 60 crowns: 20 with a full abutment height (6 mm), 20 with a medium abutment height (4 mm), and 20 with a minimal (2.5 mm) abutment height. The marginal and internal fit and the degree of possible rotation were evaluated by using polyvinylsiloxane impressions under a light microscope (magnification of ×50). To measure the retention force, a custom force-measuring device was employed. STATISTICAL ANALYSIS one-sided Wilcoxon rank-sum tests with Bonferroni-Holm corrections, Fisher's exact tests, and Spearman's rank correlation coefficient. RESULTS Type A exhibited increased marginal gaps (primary end-point: 55 ± 20 μm vs. 138 ± 59 μm, P < 0.001) but less rotation (P < 0.001) than Type B. The internal fit was also better for Type A than for Type B (P < 0.001). The retention force of Type A (2.49 ± 3.2 N) was higher (P = 0.019) than that of Type B (1.27 ± 0.84 N). Reduction in abutment height did not affect the variables observed. CONCLUSION Less-tapered abutments with more antirotation planes provide an increase in the retention force, which confines the horizontal rotation but widens the marginal gaps of the crowns. Thus, casting of nonprecious crowns with Type A abutments may result in clinically unfavorable marginal gaps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous polyurethane (PU) scaffolds for cardiac tissue engineering. The solvent for the preparation of the PU scaffolds was a mixture of dimethylformamide (DFM) and tetrahydrofuran (THF). The enhanced method involved the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and the pore interconnectivity of scaffolds. Highly porous three-dimensional scaffolds with a well interconnected porous structure could be achieved at the polymer solution concentration of up to 20% by air or vacuum drying to remove the solvent. When the salt particle sizes of 212-295, 295-425, or 425-531 µm and a 15% w/v polymer solution concentration were used, the porosity of the scaffolds was between 83-92% and the compression moduli of the scaffolds were between 13 kPa and 28 kPa. Type I collagen acidic solution was introduced into the pores of a PU scaffold to coat the collagen onto the pore walls throughout the whole PU scaffold. The human aortic endothelial cells (HAECs) cultured in the collagen-coated PU scaffold for 2 weeks were observed by scanning electron microscopy (SEM). It was shown that the enhanced SCPL method and the collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to report the resistance of plasma-sprayed titanium dioxide (TiO2) nanostructured coatings in a corrosive environment.----- Design/methodology/approach: Weight loss studies are performed according to ASTM G31 specifications in 3.5?wt% NaCl. Electrochemical polarization resistance measurements are made according to ASTM G59-91 specifications. Corrosion resistance in a humid and corrosive environment is determined by exposing the samples in a salt spray chamber for 100?h. Microstructural studies are carried out using an atomic force microscope and scanning electron microscope.----- Findings: The nanostructured TiO2 coatings offer good resistance to corrosion, as shown by the results of immersion, electrochemical and salt spray studies. The corrosion resistance of the coating is dictated primarily by the geometry of splat lamellae, density of unmelted nanoparticles, magnitude of porosity and surface homogeneity.----- Practical implications: The TiO2 nanostructured coatings show promising potential for use as abrasion, wear-resistant and thermal barrier coatings for service in harsh environments.----- Originality/value: The paper relates the corrosion resistance of nanostructured TiO2 coatings to their structure and surface morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique is described whereby micro-ATR/FTIR imaging can be used to follow polymer degradation reactions in situ in real time. The internal reflection element (IRE) assembly is removed from the ATR objective and polymer is solvent cast directly onto the IRE surface. The polymer is then subjected to degradation conditions and molecular structural changes monitored by periodically replacing the IRE assembly back in the ATR objective and collecting spectra which can be used to construct images. This approach has the benefit that the same part of the sample is always studied, and that contact by pressure which might damage the polymer surface is not required. The technique is demonstrated using the polymer Topas which was degraded by exposure to UVC light in air.