990 resultados para Tire rubber concrete
Resumo:
The use of rubber aggregates, steel and textile fibres recycled from tires in concrete is a solution that it is being studied by several authors around the world. A few works have been carried out at room temperature but very scarce at high temperatures. This paper presents the results of a research with the aim to evaluate the behaviour at high temperatures of a concrete made with different amounts of recycled textile and steel fibres from tires. The study considered five concrete compositions, with the same water/cement ratio (W/C=0.43), differing only in the type and quantity of fibers incorporated in the mixture. Thus, a reference composition (0% fiber), two compositions with 30 and 70kg/m3 of steel fibers and a composition with 2 and 4kg/m3 of textile fibers from tires were tested. The concrete was tested for a load level of 0.5fcd and different maximum temperature levels (20, 300, 500 and 700ºC).
Resumo:
ABSTRACT: Nylon tire cord (1680/2) was dipped in different adhesives based on resorcinol formaldehyde resin and latex (RFL) and was bonded to natural rubber-based compounds. The resin-rubber ratio in the RFL adhesive was optimized. The variation of pull-through load was studied by varying the drying and curing temperature of the dipped nylon tire cord. RFL adhesive based on vinylpyridine latex was found to have better rubber-to-nylon tire cord bonding, compared with the one based on natural rubber latex. Addition of a formaldehyde donor into the RFL adhesive/rubber compound improves adhesion.
Resumo:
Analysis of experimental interlocking blocks of concrete with addition of residues of process the tires retreading production. With the population growth in recent years, industry in general has adjusted itself to resulting demand. the industry of tire retreading generates residues that have been discarded without any control. this adds to environmental pollution and promotes the proliferation of vectors harmful to health, aiming to find an application for this type of residues, this study presents experimental results to interlocking concrete block pavements, with addition of residues tires, interlocking blocks were built up and we determined, through laboratory tests, the need to set the mark that provide greater return regarding analyzed characteristics, there are four types of dosage of concrete with residues tires. We accomplished tests of compression strength, water absorption and resistance to impact. Through the preliminary results, we verified that are satisfactory, confirming the possibility of applying this type of interlocking block in environments with low demand, which would bring the economy of natural sources of aggregates, beyond ecological benefits through the reuse of residues from retreading of tires.
Resumo:
The practice of running has consistently increased worldwide, and with it, related lower limb injuries. The type of running surface has been associated with running injury etiology, in addition other factors, such as the relationship between the amount and intensity of training. There is still controversy in the literature regarding the biomechanical effects of different types of running surfaces on foot-floor interaction. The aim of this study was to investigate the influence of running on asphalt, concrete, natural grass, and rubber on in-shoe pressure patterns in adult recreational runners. Forty-seven adult recreational runners ran twice for 40 m on all four different surfaces at 12 +/- 5% km . h(-1). Peak pressure, pressure-time integral, and contact time were recorded by Pedar X insoles. Asphalt and concrete were similar for all plantar variables and pressure zones. Running on grass produced peak pressures 9.3% to 16.6% lower (P < 0.001) than the other surfaces in the rearfoot and 4.7% to 12.3% (P < 0.05) lower in the forefoot. The contact time on rubber was greater than on concrete for the rearfoot and midfoot. The behaviour of rubber was similar to that obtained for the rigid surfaces - concrete and asphalt - possibly because of its time of usage (five years). Running on natural grass attenuates in-shoe plantar pressures in recreational runners. If a runner controls the amount and intensity of practice, running on grass may reduce the total stress on the musculoskeletal system compared with the total musculoskeletal stress when running on more rigid surfaces, such as asphalt and concrete.
Resumo:
Texas Department of Transportation, Austin
Resumo:
Oregon Department of Transportation, Salem
Resumo:
"ILENR/RR-93/02."
Resumo:
Mode of access: Internet.
Resumo:
Polymeric admixtures to concrete ingredients modify the properties of the processed concrete. Ductility is one such property modification. This investigation deals with the development of a method of incorporating natural rubber latex into concrete ingredients with only marginal effects on the compressive strength of base plain concrete. This retention of the strength has been effected by reducing the water/cement ratio with the aid of a superplasticizer. The quantity of natural rubber latex is expressed as the dry rubber content by percentage of volume of concrete. The compressive and tensile strengths, as well as post peak ductile behaviour have been the basis for comparison with those of unmodified concrete.
Resumo:
An automated solar reactor system was designed and built to carry out catalytic pyrolysis of scrap rubber tires at 550°C. To maximize solar energy concentration, a two degrees-of-freedom automated sun tracking system was developed and implemented. Both the azimuth and zenith angles were controlled via feedback from six photo-resistors positioned on a Fresnel lens. The pyrolysis of rubber tires was tested with the presence of two types of acidic catalysts, H-beta and H-USY. Additionally, a photoactive TiO<inf>2</inf> catalyst was used and the products were compared in terms of gas yields and composition. The catalysts were characterized by BET analysis and the pyrolysis gases and liquids were analyzed using GC-MS. The oil and gas yields were relatively high with the highest gas yield reaching 32.8% with H-beta catalyst while TiO<inf>2</inf> gave the same results as thermal pyrolysis without any catalyst. In the presence of zeolites, the dominant gasoline-like components in the gas were propene and cyclobutene. The TiO<inf>2</inf> and non-catalytic experiments produced a gas containing gasoline-like products of mainly isoprene (76.4% and 88.4% respectively). As for the liquids they were composed of numerous components spread over a wide distribution of C<inf>10</inf> to C<inf>29</inf> hydrocarbons of naphthalene and cyclohexane/ene derivatives.
Resumo:
Producing concrete with secondary raw materials is an excellent way to contribute to a moresustainable world, provided that this concrete has at least the same performance during itsservice life as concrete made with the primary raw materials it replaces. Secondary rawmaterials for Light Weight (LW) aggregates (rigid polyurethane foams, shredded tire rubberand mixed plastic scraps) have been combined with secondary raw materials for the binder(fly ash, slag and perlite tailings) making sustainable concretes that were investigated fortheir suitability as LW, highly insulating concrete for four different types of applications.Compliance to desired engineering properties (workability, setting time) was not alwaysfeasible: it was mostly the low workability of the mixtures that limited their application.Contrary to well established cements, steering the workability by adding water was not anoption for these binders that rely on alkali-activation. Eight successful mixtures have beentested further. The results have shown that it is possible to produce a non-structuralsustainable concrete with good mechanical and thermal insulation properties.Design of concrete made with novel materials is currently not feasible without extensiveexperimentation as no design rules exist other than empirically derived rules based ontraditional materials. As a radical different approach, a flexible concrete mix design has beendeveloped with which the concrete can be modelled in the fresh and hardened state. Thenumerical concrete mix design method proves a promising tool in designing concrete forperformance demands such as elasticity parameters and thermal conductivity
Resumo:
Blends of styrene butadiene rubber (SBR) with maleic anhydride grafted whole tire reclaim (MA-g-WTR) have been prepared and the cure and mechanical properties have been studied with respect to the reclaim content. The grafting was carried out in the presence of dicumylperoxide (DCP) in a Brabender Plasticorder at 150'C. The presence of anhydride group on the WTR was confirmed by infrared spectrometry (IR) study. The properties were compared with those of the blends containing unmodified WTR. Though the cure time was marginally higher, the mechanical properties of the blends containing grafted WTR were better than that of the unmodified blends.
Resumo:
Chloroprene rubber was blended with whole tire reclaimed rubber (WTR) in presence of different levels of a coupling agent Si69 [bis- (3-(triethoxysilyl)propy1)tetrasuIfide] and the cure characteristics and mechanical properties were studied. The rate and state of cure were also affected by the coupling agent. While the cure time was increased, the cure rate and scorch time were decreased with increasing silane content. Tensile strength, tear strength, and abrasion resistance were improved in the presence of coupling agent. Compression set and resilience were adversely affected in presence of silane-coupling agent.Aging studies showed that the blends containing the coupling agent were inferior to the unmodified blends.
Resumo:
The primary objective of this investigation has been to develop more efficient and low cost adhesives for bonding various elastomer combinations particularly NR to NR, NR/PB to NR/PB, CR to CR,NR to CR and NR to NBR.A significant achievement of the investigation was the development of solventless and environment friendly solid adhesives for NR to NR and NR/PB to NR/PB particularly for precured retreading. Conventionally used adhesives in this area are mostly NR based adhesive strips in the presence of a dough. The study has shown that an ultra accelerator could be added to the dough just before applying it on the tire which can significantly bring down the retreading time resulting in prolonged tire service and lower energy consumption. Further latex reclaim has been used for the preparation of the solid strip which can reduce the cost considerably.Another significant finding was that by making proper selection of the RF resin, the efficiency and shelflife of the RFL adhesive used for nylon and rayon tire cord dipping can be improved. In the conventionally used RFL adhesive, the resin once prepared has to be added to the latex within 30 minutes and the RFL has to be used after 4 hours maturation time maximum shelf life of the RFL dip solution being 72 hours. In this study a formaldehyde deficient resin was used and hence more flexibility was available for mixing with latex and maturing. It also has a much longer shelf life. In the method suggested in this study, formaldehyde donors were added only in the rubber compound to make up the formaldehyde deficiency in the RFL. The results of this investigation show that the pull through load by employing this method and the conventional method are comparable. This study has also shown that the amount of RF resin with RFL adhesive can be partially replaced by other modifying agents for cost reduction.Cashew nut shell liquid (CNSL) resin can be employed for improving the bonding of dipped nylon and rayon cord with NR.Since CNSL resin cannot be added in the dip solution since it is not soluble in water, it was added in the rubber compound. The amount of wood rosin in the rubber compound can be reduced by using CNSL resin.Another interesting result of the investigation was the use of CR based adhesive modified with chlorinated natural rubber for CR to CR bonding. Addition of chlorinated natural rubber was found to improve sea water resistance of CR based adhesive. In the bonding of a polar rubber like nitrile rubber or polychloroprene rubber to a non polar rubber like natural rubber, an adhesive based on polychloroprene rubber was found to be effective.