951 resultados para Time-series analysis Mathematical models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reelection and self-interest are recurring themes in the study of our congressional leaders. To date, many studies have already been done on the trends between elections, party affiliation, and voting behavior in Congress. However, because a plethora of data has been collected on both elections and congressional voting, the ability to draw a connection between the two provides a very reasonable prospect. This project analyzes whether voting shifts in congressional elections have an effect on congressional voting. Will a congressman become ideologically more polarized when his electoral margins increase? Essentially, this paper assumes that all congressmen are ideologically polarized, and it is elections which serve to reel congressmen back toward the ideological middle. The election and ideological data for this study, which spans from the 56th to the 107th Congress, finds statistically significant relationships between these two variables. In fact, congressman pay attention to election returns when voting in Congress. When broken down by party, Democrats are more exhibitive of this phenomenon, which suggest that Democrats may be more likely to intrinsically follow the popular model of representation. Meanwhile, it can be hypothesized that insignificant results for Republicans indicate that Republicans may follow a trustee model of representation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE. To determine the effectiveness of active surveillance cultures and associated infection control practices on the incidence of methicillin resistant Staphylococcus aureus (MRSA) in the acute care setting. DESIGN. A historical analysis of existing clinical data utilizing an interrupted time series design. ^ SETTING AND PARTICIPANTS. Patients admitted to a 260-bed tertiary care facility in Houston, TX between January 2005 through December 2010. ^ INTERVENTION. Infection control practices, including enhanced barrier precautions, compulsive hand hygiene, disinfection and environmental cleaning, and executive ownership and education, were simultaneously introduced during a 5-month intervention implementation period culminating with the implementation of active surveillance screening. Beginning June 2007, all high risk patients were cultured for MRSA nasal carriage within 48 hours of admission. Segmented Poisson regression was used to test the significance of the difference in incidence of healthcare-associated MRSA during the 29-month pre-intervention period compared to the 43-month post-intervention period. ^ RESULTS. A total of 9,957 of 11,095 high-risk patients (89.7%) were screened for MRSA carriage during the intervention period. Active surveillance cultures identified 1,330 MRSA-positive patients (13.4%) contributing to an admission prevalence of 17.5% in high-risk patients. The mean rate of healthcare-associated MRSA infection and colonization decreased from 1.1 per 1,000 patient-days in the pre-intervention period to 0.36 per 1,000 patient-days in the post-intervention period (P<0.001). The effect of the intervention in association with the percentage of S. aureus isolates susceptible to oxicillin were shown to be statistically significantly associated with the incidence of MRSA infection and colonization (IRR = 0.50, 95% CI = 0.31-0.80 and IRR = 0.004, 95% CI = 0.00003-0.40, respectively). ^ CONCLUSIONS. It can be concluded that aggressively targeting patients at high risk for colonization of MRSA with active surveillance cultures and associated infection control practices as part of a multifaceted, hospital-wide intervention is effective in reducing the incidence of healthcare-associated MRSA.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial and temporal dynamics of seagrasses have been well studied at the leaf to patch scales, however, the link to large spatial extent landscape and population dynamics is still unresolved in seagrass ecology. Traditional remote sensing approaches have lacked the temporal resolution and consistency to appropriately address this issue. This study uses two high temporal resolution time-series of thematic seagrass cover maps to examine the spatial and temporal dynamics of seagrass at both an inter- and intra-annual time scales, one of the first globally to do so at this scale. Previous work by the authors developed an object-based approach to map seagrass cover level distribution from a long term archive of Landsat TM and ETM+ images on the Eastern Banks (~200 km**2), Moreton Bay, Australia. In this work a range of trend and time-series analysis methods are demonstrated for a time-series of 23 annual maps from 1988 to 2010 and a time-series of 16 monthly maps during 2008-2010. Significant new insight was presented regarding the inter- and intra-annual dynamics of seagrass persistence over time, seagrass cover level variability, seagrass cover level trajectory, and change in area of seagrass and cover levels over time. Overall we found that there was no significant decline in total seagrass area on the Eastern Banks, but there was a significant decline in seagrass cover level condition. A case study of two smaller communities within the Eastern Banks that experienced a decline in both overall seagrass area and condition are examined in detail, highlighting possible differences in environmental and process drivers. We demonstrate how trend and time-series analysis enabled seagrass distribution to be appropriately assessed in context of its spatial and temporal history and provides the ability to not only quantify change, but also describe the type of change. We also demonstrate the potential use of time-series analysis products to investigate seagrass growth and decline as well as the processes that drive it. This study demonstrates clear benefits over traditional seagrass mapping and monitoring approaches, and provides a proof of concept for the use of trend and time-series analysis of remotely sensed seagrass products to benefit current endeavours in seagrass ecology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major role of information and communication technology (ICT) in the new economy is well documented: countries worldwide are pouring resources into their ICT infrastructure despite the widely acknowledged “productivity paradox”. Evaluating the contribution of ICT investments has become an elusive but important goal of IS researchers and economists. But this area of research is fraught with complexity and we have used Solow's Residual together with time-series analysis tools to overcome some methodological inadequacies of previous studies. Using this approach, we conduct a study of 20 countries to determine if there was empirical evidence to support claims that ICT investments are worthwhile. The results show that ICT contributes to economic growth in many developed countries and newly industrialized economies (NIEs), but not in developing countries. We finally suggest ICT-complementary factors, in an attempt to rectify possible flaws in ICT policies as a contribution towards improvement in global productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A szerző e kutatás keretében az 1990–2000 közötti időszak magyar intézményi és egyéni szabadalmi bejelentők, illetve jogosultak („szabadalmasok”) szabadalmainak környezeti hatását vizsgálja. Konkrétan az ebben az időszakban a Magyar Szabadalmi Hivatalnál benyújtott szabadalmi bejelentésekből elfogadott szabadalmakat tanulmányozza, a PIPACS adatbázisban található szabadalmi leírások alapján. A pozitív környezeti hatású szabadalmak száma, valamint az összes szabadalomhoz viszonyított aránya alapján von le következtetéseket a magyar környezeti innovációs tevékenységről, és ennek potenciális magyar környezeti hatásáról. A pozitív környezeti hatású szabadalmak összes megadott szabadalomhoz viszonyított aránya az időszakban 92%-os szignifikanciaszinten növekszik. _______

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uno de los temas más complejos y necesarios en los cursos de Administración de Operaciones, es el uso de los pronósticos con modelos de series de tiempo (TSM por sus siglas en inglés) -- Para facilitar el entendimiento y ayudar a los estudiantes a comprender fácilmente los pronósticos de demanda, este proyecto presenta FOR TSM, una herramienta desarrollada en MS Excel VBA® -- La herramienta fue diseñada con una Interfaz gráfica de Usuario (GUI por sus siglas en inglés) para explicar conceptos fundamentales como la selección de los parámetros, los valores de inicialización, cálculo y análisis de medidas de desempeño y finalmente la selección de modelos

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time series analysis can be categorized into three different approaches: classical, Box-Jenkins, and State space. Classical approach makes a basement for the analysis and Box-Jenkins approach is an improvement of the classical approach and deals with stationary time series. State space approach allows time variant factors and covers up a broader area of time series analysis. This thesis focuses on parameter identifiablity of different parameter estimation methods such as LSQ, Yule-Walker, MLE which are used in the above time series analysis approaches. Also the Kalman filter method and smoothing techniques are integrated with the state space approach and MLE method to estimate parameters allowing them to change over time. Parameter estimation is carried out by repeating estimation and integrating with MCMC and inspect how well different estimation methods can identify the optimal model parameters. Identification is performed in probabilistic and general senses and compare the results in order to study and represent identifiability more informative way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis deals with some of the non-linear Gaussian and non-Gaussian time models and mainly concentrated in studying the properties and application of a first order autoregressive process with Cauchy marginal distribution. In this thesis some of the non-linear Gaussian and non-Gaussian time series models and mainly concentrated in studying the properties and application of a order autoregressive process with Cauchy marginal distribution. Time series relating to prices, consumptions, money in circulation, bank deposits and bank clearing, sales and profit in a departmental store, national income and foreign exchange reserves, prices and dividend of shares in a stock exchange etc. are examples of economic and business time series. The thesis discuses the application of a threshold autoregressive(TAR) model, try to fit this model to a time series data. Another important non-linear model is the ARCH model, and the third model is the TARCH model. The main objective here is to identify an appropriate model to a given set of data. The data considered are the daily coconut oil prices for a period of three years. Since it is a price data the consecutive prices may not be independent and hence a time series based model is more appropriate. In this study the properties like ergodicity, mixing property and time reversibility and also various estimation procedures used to estimate the unknown parameters of the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis has covered various aspects of modeling and analysis of finite mean time series with symmetric stable distributed innovations. Time series analysis based on Box and Jenkins methods are the most popular approaches where the models are linear and errors are Gaussian. We highlighted the limitations of classical time series analysis tools and explored some generalized tools and organized the approach parallel to the classical set up. In the present thesis we mainly studied the estimation and prediction of signal plus noise model. Here we assumed the signal and noise follow some models with symmetric stable innovations.We start the thesis with some motivating examples and application areas of alpha stable time series models. Classical time series analysis and corresponding theories based on finite variance models are extensively discussed in second chapter. We also surveyed the existing theories and methods correspond to infinite variance models in the same chapter. We present a linear filtering method for computing the filter weights assigned to the observation for estimating unobserved signal under general noisy environment in third chapter. Here we consider both the signal and the noise as stationary processes with infinite variance innovations. We derived semi infinite, double infinite and asymmetric signal extraction filters based on minimum dispersion criteria. Finite length filters based on Kalman-Levy filters are developed and identified the pattern of the filter weights. Simulation studies show that the proposed methods are competent enough in signal extraction for processes with infinite variance.Parameter estimation of autoregressive signals observed in a symmetric stable noise environment is discussed in fourth chapter. Here we used higher order Yule-Walker type estimation using auto-covariation function and exemplify the methods by simulation and application to Sea surface temperature data. We increased the number of Yule-Walker equations and proposed a ordinary least square estimate to the autoregressive parameters. Singularity problem of the auto-covariation matrix is addressed and derived a modified version of the Generalized Yule-Walker method using singular value decomposition.In fifth chapter of the thesis we introduced partial covariation function as a tool for stable time series analysis where covariance or partial covariance is ill defined. Asymptotic results of the partial auto-covariation is studied and its application in model identification of stable auto-regressive models are discussed. We generalize the Durbin-Levinson algorithm to include infinite variance models in terms of partial auto-covariation function and introduce a new information criteria for consistent order estimation of stable autoregressive model.In chapter six we explore the application of the techniques discussed in the previous chapter in signal processing. Frequency estimation of sinusoidal signal observed in symmetric stable noisy environment is discussed in this context. Here we introduced a parametric spectrum analysis and frequency estimate using power transfer function. Estimate of the power transfer function is obtained using the modified generalized Yule-Walker approach. Another important problem in statistical signal processing is to identify the number of sinusoidal components in an observed signal. We used a modified version of the proposed information criteria for this purpose.