928 resultados para Time varying control systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper concerns with the problem of state-feedback H∞ control design for a class of linear systems with polytopic uncertainties and mixed time-varying delays in state and input. Our approach can be described as follows. We first construct a state-feedback controller based on the idea of parameter-dependent controller design. By constructing a new parameter-dependent Lyapunov-Krasovskii functional (LKF), we then derive new delay-dependent conditions in terms of linear matrix inequalities ensuring the exponential stability of the corresponding closed-loop system with a H∞ disturbance attenuation level. The effectiveness and applicability of the obtained results are demonstrated by practical examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the controllability and stabilizability problem for control systems described by a time-varyinglinear abstract differential equation with distributed delay in the state variables. An approximate controllability propertyis established, and for periodic systems, the stabilization problem is studied. Assuming that the semigroup of operatorsassociated with the uncontrolled and non delayed equation is compact, and using the characterization of the asymptoticstability in terms of the spectrum of the monodromy operator of the uncontrolled system, it is shown that the approximatecontrollability property is a sufficient condition for the existence of a periodic feedback control law that stabilizes thesystem. The result is extended to include some systems which are asymptotically periodic. Copyright © 2014 John Wiley &Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuzzy logic has been applied to control traffic at road junctions. A simple controller with one fixed rule-set is inadequate to minimise delays when traffic flow rate is time-varying and likely to span a wide range. To achieve better control, fuzzy rules adapted to the current traffic conditions are used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes an online learning control system that uses the strategy of Model Predictive Control (MPC) in a model based locally weighted learning framework. The new approach, named Locally Weighted Learning Model Predictive Control (LWL-MPC), is proposed as a solution to learn to control robotic systems with nonlinear and time varying dynamics. This paper demonstrates the capability of LWL-MPC to perform online learning while controlling the joint trajectories of a low cost, three degree of freedom elastic joint robot. The learning performance is investigated in both an initial learning phase, and when the system dynamics change due to a heavy object added to the tool point. The experiment on the real elastic joint robot is presented and LWL-MPC is shown to successfully learn to control the system with and without the object. The results highlight the capability of the learning control system to accommodate the lack of mechanical consistency and linearity in a low cost robot arm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study of the stability of systems governed by a linear multidimensional time-varying equation, which are encountered in spacecraft dynamics, economics, demographics, and biological systems, gives attention the lemma dealing with L(inf) stability of an integral equation that results from the differential equation of the system under consideration. Using the proof of this lemma, the main result on L(inf) stability is derived according; a corollary of the theorem deals with constant coefficient systems perturbed by small periodic terms. (O.C.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range dependent, and distributeddelay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs) and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method