897 resultados para Time and state dependent rules
Resumo:
Résumé françaisLa majorité des organismes vivants sont soumis à l'alternance du jour et de la nuit, conséquence de la rotation de la terre autour de son axe. Ils ont développé un système interne de mesure du temps, appelé horloge circadienne, leur permettant de s'adapter et de synchroniser leur comportement et leur physiologie aux cycles de lumière. Cette dernière est considérée comme étant le signal majeur entraînant l'horloge interne et. par conséquent, les rythmes journaliers d'éveil et de sommeil. Outre sa régulation circadienne, le sommeil est contrôlé par un processus homéostatique qui détermine son besoin. La contribution de ces deux processus dans le fonctionnement cellulaire du cerveau n'a pas encore été investiguée. La mesure de l'amplitude ainsi que de la prévalence des ondes delta de l'EEG (activité delta) constitue un index très fiable du besoin de sommeil. Il a été démontré que cette activité est génétiquement déterminée et associée à un locus de trait quantitatif situé sur le chromosome 13 de la souris.Grâce à des expériences de privation de sommeil et d'analyses de transcriptome du cerveau dans trois souches de souris présentant diverses réponses à la privation de sommeil, nous avons trouvé que Homerla, localisé dans la région d'intérêt du chromosome 13, est le meilleur marqueur du besoin de sommeil. Homerla est impliqué dans la récupération de l'hyperactivité neuronale induite par le glutamate, grâce à son effet tampon sur le calcium intracellulaire. Une fonction fondamentale du sommeil pourrait donc être de protéger le cerveau et de lui permettre de récupérer après une hyperactivité neuronale imposée par une veille prolongée.De plus, nous avons montré que 2032 transcrits sont exprimés rythmiqueraent dans le cerveau de la souris, parmi lesquels seulement 391 le restent après que les animaux aient été privés de sommeil à différents moments au cours des 24 heures. Cette observation montre clairement que la plupart des changements rythmiques au niveau du transcriptome dépendent du sommeil et non de l'horloge circadienne et souligne ainsi l'importance du sommeil dans la physiologie des mammifères.La plupart des expériences concernant les rythmes circadiens ont été réalisées sur des individus isolés en négligeant l'effet du contexte social sur les comportements circadiens. Les espèces sociales, telles que les fourmis, se caractérisent par une division du travail où une répartition des tâches s'effectue entre ses membres. De plus, certaines d'entre elles doivent être pratiquées en continu comme les soins au couvain tandis que d'autres requièrent une activité rythmique comme le fourragement. Ainsi la fourmi est un excellent modèle pour l'étude de 1 influence du contexte social sur les rythmes circadiens.A ces fins, nous avons décidé d'étudier les rythmes circadiens chez une espèce de fourmi Camponotus fellah et de caractériser au niveau moléculaire son horloge circadienne. Nous avons ainsi développé un système vidéo permettant de suivre l'activité locomotrice de tous les individus d'une colonie. Nos résultats montrent que, bien que la plupart des fourmis soient arythmiques à l'intérieur de la colonie, elles développent d'amples rythmes d'activité en isolation. De plus, ces rythmes disparaissent presque aussitôt que la fourmi est réintroduite dans la colonie. Cette rythmicité observée en isolation semble être générée par l'horloge circadienne car elle persiste en condition constante (obscurité totale). Nous avons ensuite regardé si cette apparente arythmie observée dans la colonie résultait d'un effet masquant des interactions sociales sur les rythmes circadiens d'activité. Nos résultats suggèrent que l'horloge interne est fonctionnelle dans la colonie mais que l'expression de ses rythmes au niveau comportemental est inhibée par les interactions sociales. Les analyses moléculaires du statut de l'horloge dans différents contextes sociaux sont actuellement en cours. Le contexte social semble donc un déterminant majeur du comportement circadien chez la fourmi.AbstractAlmost all living organisms on earth are subjected to the alternance of day and night re-sulting from the rotation of the earth around its axis. They have evolved with an internal timing system, termed the circadian clock, enabling them to adapt and synchronize their behavior and physiology to the daily changes in light and related environmental parame¬ters. Light is thought to be the major cue entraining the circadian clock and consequently the rhythms of rest/activity. In addition to its circadian dependent timing, sleep is reg¬ulated by a homeostatic process that determines its need. The contribution of these two processes in the cellular functioning of the brain has not yet been considered. A highly reliable index of the homeostatic process of sleep is the measure of the amplitude and prevalence of the EEG delta waves (delta activity). It has been shown that sleep need, measured by delta activity, is genetically determined and associated with a Quantitative Trait Locus (QTL) located on the mouse chromosome 13. By using sleep deprivation and brain transcriptome profiling in three inbred mouse strains showing different responses to sleep loss, we found that Homerla, localized within this QTL region is the best transcrip¬tional marker of sleep need. Interestingly Homerla is primarily involved in the recovery from glutamate-induced neuronal hyperactivity by its buffering effect on intracellular cal¬cium. A fundamental function of sleep may therefore reside in the protection and recovery of the brain from a neuronal hyperactivity imposed by prolonged wakefulness.Moreover, time course gene expression experiments showed that 2032 brain tran¬scripts present a rhythmic variation, but only 391 of those remain rhythmic when mice are sleep deprived at four time points around the clock. This finding clearly suggests that most changes in gene transcription over the day are sleep-wake dependent rather than clock dependent and underlines the importance of sleep in mammalian physiology.In the second part of this PhD, I was interested in the social influence on circadian behavior. Most experiments done in the circadian field have been performed on isolated individuals and have therefore ignored the effect of the social context on circadian behav-ior. Eusocial insect species such as ants are characterized by a division of labor: colony tasks are distributed among individuals, some of them requiring continuous activity such as nursing or rhythmic ones such as foraging. Thus ants represent a suitable model to study the influence of the social context on the circadian clock and its output rhythms.The aim of this part was to address the effect of social context on circadian rhythms in the ant species Camponotus fellah and to characterize its circadian clock at the molecu¬lar level. We therefore developed a video tracking system to follow the locomotor activity of all individuals in a colony. Our results show that most ants are arrhythmic within the colony, but develop, when subjected to social isolation, strong rhythms of activity that intriguingly disappear when individuals are reintroduced into the colony. The rhythmicity observed in isolated ants seems to be driven by the circadian clock as it persists under constant conditions (complete darkness). We then tested whether the apparent arrhyth- micity in the colony stemmed from a masking effect of social interactions on circadian rhythms. Indeed, we found that circadian clocks of ants in the colony are functional but their expression at the behavioral level is inhibited by social interactions. The molecular assessment of the circadian clock functional state in the different social context is still under investigation. Our results suggest that social context is a major determinant of circadian behavior in ants.
Resumo:
Traditional culture-dependent methods to quantify and identify airborne microorganisms are limited by factors such as short-duration sampling times and inability to count nonculturableor non-viable bacteria. Consequently, the quantitative assessment of bioaerosols is often underestimated. Use of the real-time quantitative polymerase chain reaction (Q-PCR) to quantify bacteria in environmental samples presents an alternative method, which should overcome this problem. The aim of this study was to evaluate the performance of a real-time Q-PCR assay as a simple and reliable way to quantify the airborne bacterial load within poultry houses and sewage treatment plants, in comparison with epifluorescencemicroscopy and culture-dependent methods. The estimates of bacterial load that we obtained from real-time PCR and epifluorescence methods, are comparable, however, our analysis of sewage treatment plants indicate these methods give values 270-290 fold greater than those obtained by the ''impaction on nutrient agar'' method. The culture-dependent method of air impaction on nutrient agar was also inadequate in poultry houses, as was the impinger-culture method, which gave a bacterial load estimate 32-fold lower than obtained by Q-PCR. Real-time quantitative PCR thus proves to be a reliable, discerning, and simple method that could be used to estimate airborne bacterial load in a broad variety of other environments expected to carry high numbers of airborne bacteria. [Authors]
Resumo:
The effects of L-histidine (LH) on anxiety and memory retrieval were investigated in adult male Swiss Albino mice (weight 30-35 g) using the elevated plus-maze. The test was performed on two consecutive days: trial 1 (T1) and trial 2 (T2). In T1, mice received an intraperitoneal injection of saline (SAL) or LH before the test and were then injected again and retested 24 h later. LH had no effect on anxiety at the dose of 200 mg/kg since there was no difference between the SAL-SAL and LH-LH groups at T1 regarding open-arm entries (OAE) and open-arm time (OAT) (mean ± SEM; OAE: 4.0 ± 0.71, 4.80 ± 1.05; OAT: 40.55 ± 9.90, 51.55 ± 12.10, respectively; P > 0.05, Kruskal-Wallis test), or at the dose of 500 mg/kg (OAE: 5.27 ± 0.73, 4.87 ± 0.66; OAT: 63.93 ± 11.72, 63.58 ± 10.22; P > 0.05, Fisher LSD test). At T2, LH-LH animals did not reduce open-arm activity (OAE and OAT) at the dose of 200 mg/kg (T1: 4.87 ± 0.66, T2: 5.47 ± 1.05; T1: 63.58 ± 10.22; T2: 49.01 ± 8.43 for OAE and OAT, respectively; P > 0.05, Wilcoxon test) or at the dose of 500 mg/kg (T1: 4.80 ± 1.60, T2: 4.70 ± 1.04; T1: 51.55 ± 12.10, T2: 43.88 ± 10.64 for OAE and OAT, respectively; P > 0.05, Fisher LSD test), showing an inability to evoke memory 24 h later. These data suggest that LH does not act on anxiety but does induce a state-dependent memory retrieval deficit in mice.
Resumo:
We investigate for very general cases the multiplet and fine structure splitting of muonelectron atoms arising from the coupling of the electron and muon angular momenta, including the effect of the Breit operator plus the electron state-dependent screening. Although many conditions have to be fulfilled simultaneously to observe these effeets, it should be possible to measure them in the 6h- 5g muonic transition in the Sn region.
Resumo:
Results of relativistic multiconfiguration Dirac-Fock calculations with an extended nucleus are used to analyze the volume isotope shifts of the resonance transitions in the group-IIa and -IIb elements as well as in Yb. This is done together with a review of the isotope shift theory, including a critical evaluation and comparison of the semiempirical calculation of volume isotope shifts commonly used today. Electronic factors F_i, proportional to differences of electronic densities over the nuclear volume, are discussed within various approximations and compared with experimental results.
Resumo:
Relativistic multi-configuration Dirac-Fock wavefunctions, coupled to good angular momentum J, have been calculated for low lying states of Ba I and Ba II. The resulting electronic factors show good agreement with data derived from recent high-resolution laser spectroscopy experiments and results from a comparison of muonic and optical data.
Resumo:
Recent research into sea ice friction has focussed on ways to provide a model which maintains much of the clarity and simplicity of Amonton's law, yet also accounts for memory effects. One promising avenue of research has been to adapt the rate- and state- dependent models which are prevalent in rock friction. In such models it is assumed that there is some fixed critical slip displacement, which is effectively a measure of the displacement over which memory effects might be considered important. Here we show experimentally that a fixed critical slip displacement is not a valid assumption in ice friction, whereas a constant critical slip time appears to hold across a range of parameters and scales. As a simple rule of thumb, memory effects persist to a significant level for 10 s. We then discuss the implications of this finding for modelling sea ice friction and for our understanding of friction in general.
Resumo:
A class of shape-invariant bound-state problems which represent transitions in a two-level system introduced earlier are generalized to include arbitrary energy splittings between the two levels as well as intensity-dependent interactions. We show that the coupled-channel Hamiltonians obtained correspond to the generalizations of the nonresonant and intensity-dependent Jaynes-Cummings Hamiltonians, widely used in quantized theories of lasers. In this general context, we determine the eigenstates, eigenvalues, the time evolution matrix and the population inversion matrix factor.
Resumo:
Here, a simplified dynamical model of a magnetically levitated body is considered. The origin of an inertial Cartesian reference frame is set at the pivot point of the pendulum on the levitated body in its static equilibrium state (ie, the gap between the magnet on the base and the magnet on the body, in this state). The governing equations of motion has been derived and the characteristic feature of the strategy is the exploitation of the nonlinear effect of the inertial force associated, with the motion of a pendulum-type vibration absorber driven, by an appropriate control torque [4]. In the present paper, we analyzed the nonlinear dynamics of problem, discussed the energy transfer between the main system and the pendulum in time, and developed State Dependent Riccati Equation (SDRE) control design to reducing the unstable oscillatory movement of the magnetically levitated body to a stable fixed point. The simulations results showed the effectiveness of the (SDRE) control design. Copyright © 2011 by ASME.
Resumo:
This paper deals with the problem of establishing stabilizing state-dependent switching laws in DC-DC converters operating at continuous conduction mode (CCM) and comparing their performance indexes. Firstly, the nature of the problem is defined, that is, the study of switched affine systems, which may not share a common equilibrium point. The concept of stability is, therefore, broadened. Then, the central theorem is proposed, from which a family of switching laws can be derived, namely the minimum law and the hold state law. Some of these are proved to stabilize the basic DC-DC converters and then, their performances are compared to another law, from a previous work, by simulation, where a great reduction in overshoot is obtained. © 2011 IEEE.
Resumo:
The topic of this study was to evaluate state-dependent effects of diazepam on the frequency characteristics of 47-channel spontaneous EEG maps. A novel method, the FFT-Dipole-Approximation (Lehmann and Michel, 1990), was used to study effects on the strength and the topography of the maps in the different frequency bands. Map topography was characterized by the 3-dimensional location of the equivalent dipole source and map strength was defined as the spatial standard deviation (the Global Field Power) of the maps of each frequency point. The Global Field Power can be considered as a measure of the amount of energy produced by the system, while the source location gives an estimate of the center of gravity of all sources in the brain that were active at a certain frequency. State-dependency was studied by evaluating the drug effects before and after a continuous performance task of 25 min duration. Clear interactions between drug (diazepam vs. placebo) and time after drug intake (before and after the task) were found, especially in the inferior-superior location of the dipole sources. It supports the hypothesis that diazepam, like other drugs, has different effects on brain functions depending on the momentary functional state of the brain. In addition to the drug effects, clearly different source locations and Global Field Power were found for the different frequency bands, replicating earlier reports (Michel et al., 1992).