970 resultados para Time Resolved Laser Induced Incandescence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manipulation of the spin degree of freedom has been demonstrated in a spin-polarized electron plasma in a heterostructure by using exchange-interaction-induced dynamic spin splitting rather than the Rashba and Dresselhaus types, as revealed by time-resolved Kerr rotation. The measured spin splitting increases from 0.256 meV to 0.559 meV as the bias varies from -0.3 V to -0.6 V. Both the sign switch of the Kerr signal and the phase reversal of Larmor precessions have been observed with biases, which all fit into the framework of exchange-interaction-induced spin splitting. The electrical control of it may provide a new effective scheme for manipulating spin-selected transport in spin FET-like devices. Copyright (C) EPLA, 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper described a laser-excited time-resolved fluoroimmunoassay set. It made lanthanide ion to couple the anhydrde of diethylenetriaminepentaacetic acid (DTPAA) for labeling antibodies. The experiment used polystyrene tap coated with HCV antigen as the solid phase and a chelate of the rare earth metal europium as fluorescent label. A nitrogen laser beam was used to excite the Eu3+ chelates and after 60 ys delay time,the emission fluorescence was measured. Background fluorescence of short lifetimes caused by serum components and Raman scattering can be eliminated by set the delay rime. In the system condition, fluorescent spectra and fluorescent lifetimes of Eu3+ beta-naphthoyltrifluroacetone (NTA) chelates were measured. The fluorescent lifetime value is 650 mu s. The maximum emssion wavelength is 613 nm. The linear range of europium ion concentration is 1 x 10(-7)- 1 x 10(-11) g.mL(-1) and the detection limit is 1 x 10(-13) g.mL(-1). The relative standard deviation of determination ( n = 12) for samples at 0.01 ng.mL(-1) magnitude is 6.4%. Laser-TRFIA was also found to be suitable for diagnosis of HCV. The sensitvity and specificity were comparable to enzyme immunoassay. The result was obtained with laser-TRFIA for 29 human correlated well with enzyme immunoassay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparison is presented of the temporally resolved resonance-line emission from the Ne-like Ge XUV laser (pumped with nanosecond pulses) with the predictions for the same emission from the hydro-atomic code EHYBRID. The specific lines chosen were the two 3s-2p Ne-like lines at 10.01 and 9.762 Angstrom, and the 3s-2p F-like group of lines in the 9.4-9.6 Angstrom region. Modification of the code to include 112 excited levels of the F-like ion facilitated a direct comparison between experiment and model of (i) the temporal variation of the emissions and (ii) the variation of the peak intensity ratios of the F-like to Ne-like emissions with irradiance on target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved probe interferometry was used to obtain complete density mapping of laser produced plasmas. The plasma was produced by symmetrical irradiation of thin targets, to be used for short pulse delayed interaction experiments. The progress in the plasma characterization due to the use of a picosecond pulse probe is reported, and the relative merits of different target designs are also discussed. The two-dimensional density maps obtained appear to be in substantial agreement with two-dimensional hydrodynamic code predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to characterise the laser ablation process from high-Tc superconductors, the time evolution of plasma produced by a Q-switching Nd:YAG laser from a GdBa2Cu3O7 superconducting sample has been studied using spectroscopic and ion-probe techniques. It has been observed that there is a fairly large delay for the onset of the emission from oxide species in comparison with those from atoms and ions of the constituent elements present in the plasma. Faster decay occurs for emission from oxides and ions compared with that from neutral atoms. These observations support the view that oxides are not directly produced from the target, but are formed by the recombination process while the plasma cools down. Plasma parameters such as temperature and velocity are also evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial and temporal analyses of the spectra of the laser induced plasma from a polytetrafluroethylene (PTFE) target obtained with the 1.06 mu m radiation from a Q-switched Nd:YAG laser have been carried out. The spatially resolved spectra of the plasma emission show that molecular bands of C2 (Swan bands) and CN are very intense in the outer regions of the plasma, whereas higher ionized states of carbon are predominant in the core region of the plasma emission. The vibrational temperature and population distribution in the different vibrational levels have been studied as a function of laser energy. From the time resolved studies, it has been observed that there exist fairly large time delays for the onset of emission from all the species in the outer region of the plasma. The molecular bands in each region exhibit much larger time delays in comparison to the ionic lines in the plasma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser ablation of graphite has been carried out using 1.06mm radiation from a Q-switched Nd:YAG laser and the time of flight distribution of molecular C2 present in the resultant plasma is investigated in terms of distance from the target as well as laser fluences employing time resolved spectroscopic technique. At low laser fluences the intensities of the emission lines from C2 exhibit only single peak structure while beyond a threshold laser fluence, emission from C2 shows a twin peak distribution in time. The occurrence of the faster velocity component at higher laser fluences is explained as due to species generated from recombination processes while the delayed peak is attributed to dissociation of higher carbon clusters resulting in the generation of C2 molecule. Analysis of measured data provides a fairly complete picture of the evolution and dynamics of C2 species in the laser induced plasma from graphite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time and space resolved studies of emission from CN molecules have been carried out in the plasma produced from graphite target by 1.06 urn pulses from a Q-switched Nd:YAG laser. Depending on the laser pulse energy, time of observation and position of the sampled volume of the plasma, the features of the emission spectrum are found to change drastically. The vibrational temperature and population distribution in the different vibrational levels have been studied as functions of distance, time, laser energy and ambient gas pressure. Evidence for nonlinear effects of the plasma medium such as self focusing which exhibits threshold-like behaviour are also obtained. Temperature and electron density of the plasma have been evaluated using the relative line intensities of successive ionization stages of carbon atom. These electron density measurements are verified by using Stark broadening method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The real-time dynamics of Na_n (n=3-21) cluster multiphoton ionization and fragmentation has been studied in beam experiments applying femtosecond pump-probe techniques in combination with ion and electron spectroscopy. Three dimensional wave packet motions in the trimer Na_3 ground state X and excited state B have been observed. We report the first study of cluster properties (energy, bandwidth and lifetime of intermediate resonances Na_n^*) with femtosecond laser pulses. The observation of four absorption resonances for the cluster Na_8 with different energy widths and different decay patterns is more difficult to interpret by surface plasmon like resonances than by molecular structure and dynamics. Timeresolved fragmentation of cluster ions Na_n^+ indicates that direct photo-induced fragmentation processes are more important at short times than the statistical unimolecular decay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulse repetition rates and the number of laser pulses are among the most important parameters that do affect the analysis of solid materials by laser induced breakdown spectroscopy, and the knowledge of their effects is of fundamental importance for suggesting analytical strategies when dealing with laser ablation processes of polymers. In this contribution, the influence of these parameters in the ablated mass and in the features of craters was evaluated in polypropylene and high density polyethylene plates containing pigment-based PbCrO4. Surface characterization and craters profile were carried out by perfilometry and scanning electron microscopy. Area, volume and profile of craters were obtained using Taylor Map software. A laser induced breakdown spectroscopy system consisted of a Q-Switched Nd:YAG laser (1064 nm, 5 ns) and an Echelle spectrometer equipped with ICCD detector were used. The evaluated operating conditions consisted of 10, 25 and 50 laser pulses at 1, 5 and 10 Hz, 250 mJ/pulse (85 J cm(-2)), 2 mu s delay time and 6 mu s integration time gate. Differences in the topographical features among craters of both polymers were observed. The decrease in the repetition rate resulted in irregular craters and formation of edges, especially in polypropylene sample. The differences in the topographical features and ablated masses were attributed to the influence of the degree of crystallinity, crystalline melting temperature and glass transition temperature in the ablation process of the high density polyethylene and polypropylene. It was also observed that the intensities of chromium and lead emission signals obtained at 10 Hz were two times higher than at 5 Hz by keeping the number of laser pulses constant. (C) 2011 Elsevier B. V. All rights reserved.