954 resultados para Thiophene adsorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research study discussed in the paper investigated the adsorption/desorption behaviour of heavy metals commonly deposited on urban road surfaces, namely, Zn, Cu, Cr and Pb for different particle size ranges of solids. The study outcomes, based on field studies and batch experiments confirmed that road deposited solids particles contain a significantly high amount of vacant charge sites with the potential to adsorb additional heavy metals. Kinetic studies and adsorption experiments indicated that Cr is the most preferred metal element to associate with solids due to the relatively high electro negativity and high charge density of trivalent cation (Cr3+). However, the relatively low availability of Cr in the urban road environment could influence this behaviour. Comparing total adsorbed metals present in solids particles, it was found that Zn has the highest capacity for adsorption to solids. Desorption experiments confirmed that a low concentration of Cu, Cr and Pb in solids was present in water-soluble and exchangeable form, whilst a significant fraction of adsorbed Zn has a high likelihood of being released back into solution. Among heavy metals, Zn is considered to be the most commonly available metal among road surface pollutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amonia borane (AB) has been identified as a potential candidate highcapacity hydrogen storage material. This work probes the adsorption and dissociation of AB inside and outside single-walled carbon nanotubes (SWCNTs) within the framework of density functional theory. The dissociation barriers of AB have been calculated and compared with that of the isolated AB molecule. On the basis of the present calculations, no notable improvement results from SWCNT confinement; on the contrary, the dissociation barrier slightly increases with respect to isolated AB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strong binding of isolated carbon dioxide (CO2) on aluminium nitride (AlN) single walled nanotubes is verified using two different functionals. Two optimized configurations corresponding to physisorption and chemisorption are linked by a low energy barrier, such that the chemisorbed state is accessible and thermodynamically favored at low temperatures. In contrast, N2 is found only to form a physisorbed complex with the AlN nanotube, suggesting the potential application of aluminium nitride based materials for CO2 fixation. The effect of nanotube diameter on gas adsorption properties is also discussed. The diameter is found to have an important effect on the chemisorption of CO2, but has little effect on the physisorption of either CO2 or N2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption of carbon dioxide and nitrogen molecules on aluminum nitride (AlN) nanostructures has been explored using first-principle computational methods. Optimized configurations corresponding to physisorption and, subsequentially, chemisorption of CO2 are identified, in contrast to N2, for which only a physisorption structure is found. Transition-state searches imply a low energy barrier between the physisorption and chemisorption states for CO2 such that the latter is accessible and thermodynamically favored at room temperature. The effective binding energy of the optimized chemisorption structure is apparently larger than those for other CO2 adsorptive materials, suggesting the potential for application of aluminum nitride nanostructures for carbon dioxide capture and storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ab initio density functional theory (DFT) study with correction for dispersive interactions was performed to study the adsorption of N2 and CO2 inside an (8, 8) single-walled carbon nanotube. We find that the approach of combining DFT and van der Waals correction is very effective for describing the long-range interaction between N2/CO2 and the carbon nanotube (CNT). Surprisingly, exohedral doping of an Fe atom onto the CNT surface will only affect the adsorption energy of the quadrupolar CO2 molecule inside the CNT (20–30%), and not that of molecular N2. Our results suggest the feasibility of enhancement of CO2/N2 separation in CNT-based membranes by using exohedral doping of metal atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ab initio density functional theory (DFT) calculations are performed to study the adsorption of H2 molecules on a Ti-doped Mg(0001) surface. We find that two hydrogen molecules are able to dissociate on top of the Ti atom with very small activation barriers (0.103 and 0.145 eV for the first and second H2 molecules, respectively). Additionally, a molecular adsorption state of H2 above the Ti atom is observed for the first time and is attributed to the polarization of the H2 molecule by the Ti cation. Our results parallel recent findings for H2 adsorption on Ti-doped carbon nanotubes or fullerenes. They provide new insight into the preliminary stages of hydrogen adsorption onto Ti-incorporated Mg surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deposition of hyperthermal CH3 on diamond (001)-(2×1) surface at room temperature has been studied by means of molecular dynamics simulation using the many-body hydrocarbon potential. The energy threshold effect has been observed. That is, with fixed collision geometry, chemisorption can occur only when the incident energy of CH3 is above a critical value (Eth). Increasing the incident energy, dissociation of hydrogen atoms from the incident molecule was observed. The chemisorption probability of CH3 as a function of its incident energy was calculated and compared with that of C2H2. We found that below 10 eV, the chemisorption probability of C2H2 is much lower than that of CH3 on the same surface. The interesting thing is that it is even lower than that of CH3 on a hydrogen covered surface at the same impact energy. It indicates that the reactive CH3 molecule is the more important species than C2H2 in diamond synthesis at low energy, which is in good agreement with the experimental observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation has demonstrated the need for thermal treatment of seawater neutralised red mud (SWRM) in order to obtain reasonable adsorption of Reactive Blue dye 19 (RB 19). Thermal treatment results in a greater surface area, which results in an increased adsorption capacity due to more available adsorption sites. Adsorption of RB 19 has been found to be best achieved in acidic conditions using SWNRM400 (heated to 400 �C) with an adsorption capacity of 416.7 mg/g compared to 250.0 mg/g for untreated SWNRM. Kinetic studies indicate a pseudosecond-order reaction mechanism is responsible for the adsorption of RB 19 using SWNRM, which indicates adsorption occurs by electrostatic interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared spectra of NO, NO2 and CO adsorbed on Rh/Al2O3 have been recorded in order to identify the role of surface Rh-NO+ species in the reactions of NO and CO on Rh surfaces. Rh-NO+ was generated by thermally activated adsorption of NO, adsorption of NO on oxidised Rh or by adsorption of NO2. The latter also gave adsorbed nitrate on both Rh and the alumina support. In the presence of CO, Rh-NO+ acted as a precursor of the Rh(CO)(NO) mixed surface complex of CO and NO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared spectra are reported of methyl formate and formaldehyde adsorbed at 300 K on silica, Cu/SiO2 reduced in hydrogen and Cu/SiO2 which had been oxidised by exposure to nitrous oxide after reduction. Silanol groups on silica form hydrogen bonds with carbonyl groups in weakly adsorbed methyl formate molecules. Methyl formate ligates via its carbonyl groups to Cu atoms in the surface of reduced copper. A low residual concentration of surface oxygen on copper promoted the slow reaction of ligated methyl formate to give a bridging formate species on copper and adsorbed methoxy groups. Methyl formate did not ligate to an oxidised copper surface but was rapidly chemisorbed to give unidentate formate and methoxy species. Formaldehyde slowly polymerises on silica to form trioxane and other oxymethylene species. The reaction is faster over Cu/SiO2 which, in the reduced state, also catalyses the formation of bridging formate anions adsorbed on copper. The reaction between formaldehyde and oxidised Cu/SiO2 leads to both unidentate and bidentate formate and adsorbed water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared spectra are reported of formic acid adsorbed at 300 K on a reduced copper catalyst (Cu/SiO2) and a copper surface which had been oxidised by exposure to nitrous oxide. Formic acid was weakly adsorbed on the silica support. Ligation of formic acid to the copper surface occurred only on the reduced catalyst. Dissociative adsorption resulted in the formation of unidentate formate on the oxidised catalyst. The presence of reduced copper metal instigated a rapid reorientation to a bidentate formate species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FTIR spectra are reported of CO adsorbed on silica-supported copper catalysts prepared from copper(II) acetate monohydrate. Fully oxidised catalyst gave bands due to CO on CuO, isolated Cu2+ cations on silica and anion vacancy sites in CuO. The highly dispersed CuO aggregated on reduction to metal particles which gave bands due to adsorbed CO characteristic of both low-index exposed planes and stepped sites on high-index planes. Partial surface oxidation with N2O or H2O generated Cu+ adsorption sites which were slowly reduced to Cu° by CO at 300 K. Surface carbonate initially formed from CO was also slowly depleted with time with the generation of CO2. The results are consistent with adsorbed carbonate being an intermediate in the water-gas shift reaction of H2O and CO to H2 and CO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared spectra are reported of methanol adsorbed at 295 K on reduced Cu/SiO2 and on Cu/SiO2 which had been preoxidised by exposure to excess nitrous oxide. Methanol was chemisorbed on reduced Cu/SiO2 to give methoxy species on both silica and copper, gave a trace of formate on copper via reaction with residual surface oxygen, and was weakly adsorbed at SiOH sites on the silica support. Heating the adsorbed species at 393 K led to the loss of methoxy groups on copper and the concomitant formation of a bidentate surface formate. Heating reduced Cu/SiO2 in methanol at 538 K initially gave both gaseous and adsorbed (on Cu) methyl formate which subsequently decomposed to CO and hydrogen. The reactions of methanol with oxidised Cu/SiO2 were similar to those for the reduced catalyst although surface oxygen promoted the formation of surface methoxy groups on copper. Subsequent heating at 393 K led first to unidentate formate before the appearance of bidentate formate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FTIR spectra are reported of methanol adsorbed at 295 K on ZnO/SiO 2, on reduced Cu/ZnO/SiO2 and on Cu/ZnO/SiO2 which had been preoxidised by exposure to nitrous oxide. Methanol on ZnO/SiO2 gave methoxy species on ZnO and SiO, in addition to both strongly and weakly physisorbed methanol on SiO2. The corresponding adsorption of methanol on reduced Cu/ZnO/SiO2 also gave methoxy species on Cu and a small amount of bridging formate. Reaction of methanol with a reoxidised Cu/ZnO/SiO2 catalyst resulted in an enhanced quantity of methoxy species on Cu. Heating adsorbed species on Cu/ZnO/SiO2 at 393 K led to the loss of methoxy groups on Cu and the concomitant formation of formate species on both ZnO and Cu. The comparable reaction on a reoxidised Cu/ZnO/SiO2 catalyst gave an increased amount of formate species on ZnO and this correlated with an increased quantity of methoxy groups lost from Cu. An explanation is given in terms of adsorption of formate and formaldehyde species at special sites located at the copper/zinc oxide interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fourier-transform infrared (FTIR) spectra are reported of formic acid and formaldehyde on ZnO/SiO2, reduced Cu/ZnO/SiO2 and reoxidised Cu/ZnO/SiO2 catalyst. Formic acid adsorption on ZnO/SiO2 produced mainly bidentate zinc formate species with a lesser quantity of unidentate zinc formate. Formic acid on reduced Cu/ZnO/SiO2 catalyst resulted not only in the formation of bridging copper formate structures but also in an enhanced amount of formate relative to that for ZnO/SiO2 catalyst. Formic acid on reoxidised Cu/ZnO/SiO2 gave unidentate formate species on copper in addition to zinc formate moieties. The interaction of formaldehyde with ZnO/SiO2 catalyst resulted in the formation of zinc formate species. The same reaction on reduced Cu/ZnO/SiO2 catalyst gave bridging formate on copper and a remarkable increase in the quantity of formate species associated with the zinc oxide. Adsorption of formaldehyde on a reoxidised Cu/ZnO/SiO2 catalyst produced bridging copper formate and again an apparent increase in the concentration of zinc formate species. An explanation in terms of the adsorption of molecules at special sites located at the interface between copper and zinc oxide is given.