996 resultados para Thermal fatigue


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Effect of Thermal Relaxation on LSP Induced Residual Stresses and Fatigue Life Enhancement of AISI 316L stainless steel

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of a thermal residual stress field on fatigue crack growth in a silicon carbide particle-reinforced aluminum alloy have been measured. Stress fields were introduced into plates of material by means of a quench from a solution heat-treatment temperature. Measurements using neutron diffraction have shown that this introduces an approximately parabolic stress field into the plates, varying from compressive at the surfaces to tensile in the center. Long fatigue cracks were grown in specimens cut from as-quenched plates and in specimens which were given a stress-relieving overaging heat treatment prior to testing. Crack closure levels for these cracks were determined as a function of the position of the crack tip in the residual stress field, and these are shown to differ between as-quenched and stress-relieved samples. By monitoring the compliance of the specimens during fatigue cycling, the degree to which the residual stresses close the crack has been evaluated. © 1995 The Minerals, Metals & Material Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High temperature load controlled fatigue, hot tensile and accelerated creep properties of thermal barrier coated (TBC) Superni C263 alloy used as a candidate material in combustor liner of aero engines are highlighted in this paper. Acoustic emission technique has been utilised to characterise the ductile-brittle transition teperature the bond coat. Results revealed that the DBTT (ductile to brittle transition temperature) of this bond coat is around 923 K, which is in close proximity to the value reported for CoCrAlY type of bond coat. Finite element technique, used for analysing the equivalent stresses in the bond coat well within the elastic limit, revealed the highest order of equivalent stress at 1073 K as the bond coat is ductile above 923 K. The endurance limit in fatigue and the life of TBC coated composite under accelerated creep conditions are substantially higher than those of the substrate material. Fractographic features at high stresses under fatigue showed intergranular cleavage whereas those at low stresses were transgranular and ductile in nature. Delamination of the bond coat and spallation of the TBC at high stresses during fatigue was evident. Unlike in the case of fatigue, the mode of fracture in the substrate at very high stresses was transgranular whereas that at low stresses was intergranular in creep.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes how modeling technology has been used in providing fatigue life time data of two flip-chip models. Full-scale three-dimensional modeling of flip-chips under cyclic thermal loading has been combined with solder joint stand-off height prediction to analyze the stress and strain conditions in the two models. The Coffin-Manson empirical relationship is employed to predict the fatigue life times of the solder interconnects. In order to help designers in selecting the underfill material and the printed circuit board, the Young's modulus and the coefficient of thermal expansion of the underfill, as well as the thickness of the printed circuit boards are treated as variable parameters. Fatigue life times are therefore calculated over a range of these material and geometry parameters. In this paper we will also describe how the use of micro-via technology may affect fatigue life

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates an isothermal fatigue test for solder joints developed at the NPL. The test specimen is a lap joint between two copper arms. During the test the displacement at the ends of the copper are controlled and the force measured. The modeling results in the paper show that the displacement across the solder joint is not equal to the displacement applied at the end of the specimen. This is due to deformation within the copper arms. A method is described to compensate for this difference. The strain distribution in the solder was determined by finite element analysis and compared to the distribution generated by a theoretical 'ideal' test which generates an almost pure shear mode in the solder. By using a damage-based constitutive law the shape of the crack generated in the specimen has been predicted for both the actual test and the ideal pure shear test. Results from the simulations are also compared with experimental data using SnAgCu solder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

China Low Activation Martensitic (CLAM) steel is considered to be the main candidate material for the first wall components of future fusion reactors in China. In this paper, the low cycle fatigue (LCF) behavior of CLAM steel is studied under fully reversed tension–compression loading at 823 K in air. Total strain amplitude was controlled from 0.14% to 1.8% with a constant strain rate of 2.4×10−3 s−1. The corresponding plastic strain amplitude ranged from 0.023% to 1.613%. The CLAM steel displayed continuous softening to failure at 823 K. The relationship between strain, stress and fatigue life was obtained using the parameters obtained from fatigue tests. The LCF properties of CLAM steel at 823 K followed Coffin–Manson relationship. Furthermore, irregular serration was observed on the stress–strain hysteresis loops of CLAM steel tested with the total strain amplitude of 0.45–1.8%, which was attributed to the dynamic strain aging (DSA) effect. During continuous cyclic deformation, the microstructure and precipitate distribution of CLAM steel changed gradually. Many tempered martensitic laths were decomposed into subgrains, and the size and number of M23C6 carbide and MX carbonitride precipitates decreased with the increase of total strain amplitude. The response cyclic stress promoted the recovery of martensitic lath, while the thermal activation mainly played an important role on the growth of precipitates in CLAM steel at 823 K. In order to have a better understanding of high-temperature LCF behavior, the potential mechanisms controlling stress–strain response, DSA phenomenon and microstructure changes have also been evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulated-gate bipolar transistor (IGBT) power modules find widespread use in numerous power conversion applications where their reliability is of significant concern. Standard IGBT modules are fabricated for general-purpose applications while little has been designed for bespoke applications. However, conventional design of IGBTs can be improved by the multiobjective optimization technique. This paper proposes a novel design method to consider die-attachment solder failures induced by short power cycling and baseplate solder fatigue induced by the thermal cycling which are among major failure mechanisms of IGBTs. Thermal resistance is calculated analytically and the plastic work design is obtained with a high-fidelity finite-element model, which has been validated experimentally. The objective of minimizing the plastic work and constrain functions is formulated by the surrogate model. The nondominated sorting genetic algorithm-II is used to search for the Pareto-optimal solutions and the best design. The result of this combination generates an effective approach to optimize the physical structure of power electronic modules, taking account of historical environmental and operational conditions in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes an in situ diagnostic and prognostic (D&P) technology to monitor the health condition of insulated gate bipolar transistors (IGBTs) used in EVs with a focus on the IGBTs' solder layer fatigue. IGBTs' thermal impedance and the junction temperature can be used as health indicators for through-life condition monitoring (CM) where the terminal characteristics are measured and the devices' internal temperature-sensitive parameters are employed as temperature sensors to estimate the junction temperature. An auxiliary power supply unit, which can be converted from the battery's 12-V dc supply, provides power to the in situ test circuits and CM data can be stored in the on-board data-logger for further offline analysis. The proposed method is experimentally validated on the developed test circuitry and also compared with finite-element thermoelectrical simulation. The test results from thermal cycling are also compared with acoustic microscope and thermal images. The developed circuitry is proved to be effective to detect solder fatigue while each IGBT in the converter can be examined sequentially during red-light stopping or services. The D&P circuitry can utilize existing on-board hardware and be embedded in the IGBT's gate drive unit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the 1980s, different devices based on superelastic alloys have been developed to fulfill orthodontic applications. Particularly in the last decades several researches have been carried out to evaluate the mechanical behavior of Ni-Ti alloys, including their tensile, torsion and fatigue properties. However, studies regarding the dependence of elastic properties on residence time of Ni-Ti wires in the oral cavity are scarce. Such approach is essential since metallic alloys are submitted to mechanical stresses during orthodontic treatment as well as pH and temperature fluctuations. The goal of the present contribution is to provide elastic stress-strain results to guide the orthodontic choice between martensitic thermal activated and austenitic superelastic Ni-Ti alloys. From the point of view of an orthodontist, the selection of appropriate materials and the correct maintenance of the orthodontic apparatus are essential needs during clinical treatment. The present work evaluated the elastic behavior of Ni-Ti alloy wires with diameters varying from 0.014 to 0.020 inches, submitted to hysteresis tensile tests with 8% strain. Tensile tests were performed after periods of use of 1, 2 and 3 months in the oral cavity of patients submitted to orthodontic treatment. The results from the hysteresis tests allowed to exam the strain range covered by isostress lines upon loading and unloading, as well as the residual strain after unloading for both superelastic and thermal activated Ni-Ti wires. Superelastic Ni-Ti wires exhibited higher load isostress values compared to thermal activated wires. It was found that such differences in the load isostress values can increase with increasing residence time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deposition of wear-resistant hard chromium plating leads to a decrease in the fatigue strength of the base material. Despite the effective protection against wear and corrosion, fatigue life and environmental requirements result in pressure to identify alternatives or to improve conventional chromium electroplating mechanical characteristics. An interesting, environmentally safer and cleaner alternative for the replacement of hard chronic plating is tungsten carbide thermal spray coating, applied by high velocity oxyfuel (HVOF) process.To improve the fatigue strength of aeronautical steel chromium electroplated, shot peening is a successfully used method. Multiple lacer systems of coatings are considered to have larger resistance to crack propagation in comparison with simple layer.The aim of this study was to analyze the effect of nickel underplate on the fatigue strength of hard chromium plated AISI 4340 steel in two mechanical conditions: HRc 39 and HRc 52.Rotating bending fatigue tests results indicate that the clectroless nickel plating underlayer is responsible for the increase in fatigue strength of AISI 4340 steel chromium electroplated. This behavior may be attributed to the largest toughness/ductility and compressive residual stresses which, probably, arrested or delayed the inicrocrack propagation from the hard chromium external layer. The compressive residual stress field (CRSF) induced by the electroplating process was determined by X-ray diffraction method. The evolution of fatigue strength compressive residual stress field CRSF and crack sources are discussed and analyzed by SEM. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internal residual stresses significantly influence the fatigue strength of coated materials. It is well known that chromium plating is the most used electrodeposited coating for important industrial applications. However, pressure to identify alternatives or to improve the chromium electroplating process have increased in recent years, related to the reduction in fatigue strength of the base material and to environmental requirements. The high efficiency and fluoride free hard chromium electroplating there called accelerated) is an improvement to the conventional process. One environmentally safer and cleaner alternative to hard chromium plating is tungsten carbide thermal spray coating applied by the High Velocity Oxy-Fuel (HVOF) process. To increase the fatigue strength of chromium plated materials, coating thickness and microcracks density are important parameters to be controlled. Techniques as compressive residual stresses induced by shot peening and multilayers, are also used. The aim of this study was to analyse the effects on AISI 4340 steel, in the rotating bending fatigue behaviour, of the: tungsten carbide thermal spray coating applied by HP/HVOF process; chemical nickel underplate, and shot peening process applied before coating deposition, in comparison to hard chromium electroplatings. Rotating bending fatigue test results indicate better performance for the conventional hard chromium plating in relation to the accelerated hard chromium electroplating. Tungsten carbide thermal spray coating and accelerated hard chromium plate over nickel resulted in higher fatigue strength when compared to samples conventional or accelerated hard chromium plated. Shot peening showed to be an excellent alternative to increase fatigue strength of AISI 4340 steel hard chromium electroplated. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tendency of the aircraft industry is to enhance customer value by improving performance and reducing environmental impact. In view of availability, aluminum alloys have a historically tendency to faster insertion due to their lower manufacturing and operated production infrastructure. In landing gear components, wear and corrosion control of many components is accomplished by surface treatments of chrome electroplating on steel or anodizing of aluminum. One of the most interesting environmentally safer and cleaner alternatives for the replacement of hard chrome plating or anodizing is tungsten carbide thermal spray coating, applied by the high velocity oxy fuel (HVOF) process. However, it was observed that residual stresses originating from these coatings reduce the fatigue strength of a component.An effective process as shot peening treatment, considered to improve the fatigue strength, pushes the crack sources beneath the surface in most of medium and high cycle cases, due to the compressive residual stress field induced. The objective of this research is to evaluate a tungsten carbide cobalt (WC-Co) coating applied by the high velocity oxy fuel (HVOF) process, used to replace anodizing. Anodic films were grown on 7050-T7451 aluminum alloy by sulfuric acid anodizing, chromic acid anodizing and hard anodizing. The influence on axial fatigue strength of anodic films grown on the aluminum alloy surface is to degrade the stress-life performance of the base material. Three groups of specimens were prepared and tested in axial fatigue to obtain S-N curves: base material, base material coated by HVOF and base material shot peened and coated.Experimental results revealed increase in the fatigue strength of Al 7050-T7451 alloy associated with the WC 17% Co coating. on the other hand, a reduction in fatigue life occurred in the shot peened and coated condition. Scanning electron microscopy technique and optical microscopy were used to observe crack origin sites, thickness and coating/substrate adhesion. (c) 2007 Elsevier B.V. All rights reserved.