972 resultados para Thermal effects
Resumo:
Given the rise in the emergence of new composite materials, their multifunctional properties, and possible applications in simple and complex structural components, there has been a need to unravel the characterization of these materials. The possibility of printing these conductive composite materials has opened a new area in the design of structural components which can conduct, transmit, and modulate electric signals with no limitation from complex geometry. Although several works have researched the behaviour of polymeric composites due to the immediate growth, however, the electrothermal behaviour of the material when subjected to varying AC applied voltage (Joule’s effect) has not been thoroughly researched. This study presents the characterization of the electrothermal behaviour of conductive composites of a polylactic acid matrix reinforced with conductive carbon black particles (CB-PLA). An understanding of this behaviour would contribute to the improved work in additive manufacturing of functional electro-mechanical conductive materials with potential application in energy systems, bioelectronics, etc. In this study, the electrothermal interplay is monitored under applied AC voltage, varying lengths, and filament printing orientations (longitudinal, oblique, and transverse). Each sample was printed using the fused deposition modeling technique such that each specimen has three different lengths (1L, 2L, 2.75L). To this end, deductions were made on properties that affect composite’s efficiency and life expectancy. The result of this study shows a great influence of printing orientation on material properties of 3D printed conductive composites of CB-PLA. The result also identifies the contribution of AC applied voltage to composites' stabilization time. This knowledge is important to provide experimental background for components' electrothermal interplay, estimate possible degradation and operating limits of composite structures when used in applications.
Resumo:
Differential scanning calorimetry (DSC) studies were performed for 60/40 P(VDF-TrFE). The results not only confirm the importance of thermal history but also show that the samples with various configurations in terms of ferroelectric phases can be obtained via thermal treatment.
Resumo:
This work reports on the effects from thermal treatment in poly(vinylidene fluoride), PVDF, obtained with differential scanning calorimetry (DSC) and dynamic thermal analysis (DMA) measurements. It is shown that in successive DMA measurements performed with one sample the α relaxation peak almost disappears while the γ′ peak appears. The α relaxation peak, at ∼100°C in DMA measurements, is attributed to the preferential orientation of chains in the amorphous phase while the γ′ relaxation peak, at ∼50°C, is related to the thermal treatment to which the sample was submitted.
Resumo:
Different thermal treatments for the synthesis of BaTiO3 powder obtained through the Pechini method were studied. The synthesis of BaTiO3 starts at 150 °C by the thermal dehydration of organic precursors. The usual inevitable formation of barium carbonate during the thermal decomposition of the precursor could be retarded at lower calcination temperatures and optimized heating rates. The organic precursors were treated at temperatures between 200 and 400 °C. Then, the samples were calcined at 700 and 800 °C for 4 and 2 h, respectively. The resulting ceramic powders were characterized by gravimetric and differential thermal analyses, X-ray powder diffraction and infrared spectroscopy. It was found that depending on the heating rate and final temperature of the thermal treatment, high amounts of BaCO3 and TiO2 could be present due to the high concentration of organics in the final calcination step. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Compliant mechanisms can achieve a specified motion as a mechanism without relying on the use of joints and pins. They have broad application in precision mechanical devices and Micro-Electro Mechanical Systems (MEMS) but may lose accuracy and produce undesirable displacements when subjected to temperature changes. These undesirable effects can be reduced by using sensors in combination with control techniques and/or by applying special design techniques to reduce such undesirable effects at the design stage, a process generally termed ""design for precision"". This paper describes a design for precision method based on a topology optimization method (TOM) for compliant mechanisms that includes thermal compensation features. The optimization problem emphasizes actuator accuracy and it is formulated to yield optimal compliant mechanism configurations that maximize the desired output displacement when a force is applied, while minimizing undesirable thermal effects. To demonstrate the effectiveness of the method, two-dimensional compliant mechanisms are designed considering thermal compensation, and their performance is compared with compliant mechanisms designs that do not consider thermal compensation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We have investigated the nucleation rate at which cavities are formed in 4He and 3He at negative pressures due to thermal fluctuations. To this end, we have used a density functional that reproduces the He liquid-gas interface along the coexistence line. The inclusion of thermal effects in the calculation of the barrier against nucleation results in a sizable decrease of the absolute value of the tensile strength above 1.5 K.
Resumo:
Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values) of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other ways as well.
Resumo:
A procedure is presented for fitting incoherent scatter radar data from non-thermal F-region ionospheric plasma, using theoretical spectra previously predicted. It is found that values of the shape distortion factor D∗, associated with deviations of the ion velocity distribution from a Maxwellian distribution, and ion temperatures can be deduced (the results being independent of the path of iteration) if the angle between the line-of-sight and the geomagnetic field is larger than about 15–20°. The procedure can be used with one or both of two sets of assumptions. These concern the validity of the adopted model for the line-of-sight ion velocity distribution in the one case or for the full three-dimensional ion velocity distribution function in the other. The distribution function employed was developed to describe the line-of-sight velocity distribution for large aspect angles, but both experimental data and Monte Carlo simulations indicate that the form of the field-perpendicular distribution can also describe the distribution at more general aspect angles. The assumption of this form for the line-of-sight velocity distribution at a general aspect angle enables rigorous derivation of values of the one-dimensional, line-of-sight ion temperature. With some additional assumptions (principally that the field-parallel distribution is always Maxwellian and there is a simple relationship between the ion temperature anisotropy and the distortion of the field-perpendicular distribution from a Maxwellian), fits to data for large aspect angles enable determination of line-of-sight temperatures at all aspect angles and hence, of the average ion temperature and the ion temperature anisotropy. For small aspect angles, the analysis is restricted to the determination of the line-of-sight ion temperature because the theoretical spectrum is insensitive to non-thermal effects when the plasma is viewed along directions almost parallel to the magnetic field. This limitation is expected to apply to any realistic model of the ion velocity distribution function and its consequences are discussed. Fit strategies which allow for mixed ion composition are also considered. Examples of fits to data from various EISCAT observing programmes are presented.
Resumo:
The aim of this in vivo study was to evaluate the thermal effects caused by 810 nm 1.2 W diode laser irradiation of periodontal tissues. Despite all data available concerning the laser application for periodontal treatment, one of the most relevant challenges is to prevent the harmful tissue heating induced by different clinical protocols. Periodontal pockets were induced at molars in 96 rats. Several irradiation powers under CW mode were investigated: 0, 400, 600, 800, 1000, 1200 mW. The pockets were irradiated using a 300 A mu m frontal illumination fiber. The animals were killed at 4 or 10 days after irradiation. The mandible was surgically removed and histologically processed. The histological sections stained with H/E demonstrated that irradiation parameters up to 1000 mW were thermally safe for the periodontal tissues. The sections stained with Brown & Brenn technique evidenced bacteria in the periodontal tissues. Consequently, the diode laser irradiation as a unique treatment was not capable to eliminate bacteria of the biofilm present in the pockets. According to the methodology used here, it was concluded that the thermal variation promoted by a diode laser can cause damage to periodontal tissues depending on the energy density used. The 1.2 W diode laser irradiation itself does not control the bacteria present in the biofilm of the periodontal pockets without mechanical action. The knowledge of proper high intensity laser parameters and methods of irradiation for periodontal protocols may prevent any undesirable thermal damage to the tissues.
Resumo:
Changes in carotenoid pigment content of Brazilian Valencia orange juices due to thermal pasteurization and concentration were studied. Total carotenoid pigment content loss was not significant after thermal pasteurization and concentration. However, thermal effects on carotenoid pigment contents, especially violaxanthin and lutein, were clearly observed and significant (P < 0.05). Pasteurization reduced the content of violaxanthin by 38% and lutein by 20%. The concentration process resulted in loss of lutein (17%). With the loss of lutein, beta-cryptoxanthin became the major carotenoid in the pasteurized and concentrated juices. The provitarnin A content of the juice (beta-carotene, alpha-carotene and beta-cryptoxanthin) and the amount of zeaxanthin, which are considered to be active against age-related macular degeneration and cataracts, did not significantly decrease after pasteurization and concentration. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this in vivo study was to evaluate the thermal effects caused by 810 nm 1.2 W diode laser irradiation of periodontal tissues. Despite all data available concerning the laser application for periodontal treatment, one of the most relevant challenges is to prevent the harmful tissue heating induced by different clinical protocols. Periodontal pockets were induced at molars in 96 rats. Several irradiation powers under CW mode were investigated: 0, 400, 600, 800, 1000, 1200 mW. The pockets were irradiated using a 300 A mu m frontal illumination fiber. The animals were killed at 4 or 10 days after irradiation. The mandible was surgically removed and histologically processed. The histological sections stained with H/E demonstrated that irradiation parameters up to 1000 mW were thermally safe for the periodontal tissues. The sections stained with Brown & Brenn technique evidenced bacteria in the periodontal tissues. Consequently, the diode laser irradiation as a unique treatment was not capable to eliminate bacteria of the biofilm present in the pockets. According to the methodology used here, it was concluded that the thermal variation promoted by a diode laser can cause damage to periodontal tissues depending on the energy density used. The 1.2 W diode laser irradiation itself does not control the bacteria present in the biofilm of the periodontal pockets without mechanical action. The knowledge of proper high intensity laser parameters and methods of irradiation for periodontal protocols may prevent any undesirable thermal damage to the tissues.
Resumo:
In rare earth ion doped solids, a resonant non-linear refractive index, n2, appears when the laser pumps one of the ion excited states and the refractive index change is proportional to the excited state population. In these solids there are usually thermal and non-thermal lensing effects, where the non-thermal one is due to the polarizability difference, Δα, between excited and ground states of the ions. We have used the time resolved Z-scan and a mode-mismatched thermal lens technique with an Ar+ ion laser in Er+3 (20ZnF2-20SrF2-2NaF-16BaF2-6GaF3-(36 - x)InF3-xErF3, with x= 1, 2, 3 and 4 mol%) and Nd+3 (20SrF2-16BaF2-20ZnF2-2GdF3-2NaF-(40 - x)InF3-xNdF3, with x = 0.1, 0.25, 0.5-1 mol%) doped fluoroindate glasses. In both samples we found that the non-linear refraction is due to the thermal effect, while the non-thermal effect is negligible. This result indicates that in fluoride glasses Δα is very small (less than 10-26 cm3). We also measured the imaginary part of the non-linear refractive index (n″2) due to absorption saturation.
Resumo:
Solid-state compounds Ln-4Cl-BP, where Ln represents lighter trivalent lanthanides and 4Cl-BP is 4-chlorobenzylidenepyruvate, were prepared. Thermogravimetry, derivative thermogravimetry (TG and DTG), differential scanning calorimetry (DSC) and other methods of analysis were used to characterize and to study the thermal behaviour of these compounds.
Resumo:
The formation of calcium silicate hydrates (C-S-H) during the hydration of tricalcium silicate (C3S) in pure water and in water solutions containing 1% CaCl2 (accelerator) and 0.01% saccharose (retarder) was studied by small-angle X-ray scattering (SAXS). SAXS measurements were performed under isothermal conditions within the temperature range 25 °C T < 52 °C. The experimental results indicate that the time variation of the mass fraction of the C-S-H product phase, α(f), can be fitted, under all conditions of paste setting, by Avrami equation, α(t) = 1 -exp(-(kt)′), k being a rate parameter and n an exponent depending on the characteristics of the transformation. The parameter n is approximately equal to 2 for hydration of C^S in pure water. Depending on temperature, n varies from 2 to 2.65 for hydration in the presence of CaC^ and saccharose. The value n = 2 is theoretically expected for lateral growth of thin C-S-H plates of constant thickness. The time dependence of SAXS intensity indicates that the transformed phase (C-S-H) consists of colloidal particles in early stages of hydration, evolving by two-dimensional growth toward a disordered lamellar structure composed of very thin plates. The activation energy ΔE for the growth of C-S-H phase was determined from the time dependence of X-ray scattering intensity. These data were obtained by in situ measurements at different temperatures of hydration. The values of ΔE are 37.7, 49.4, and 44.3 kJ/mol for hydration in pure water and in water solutions containing CaCl2 and saccharose, respectively. © 2000 American Chemical Society.
Resumo:
This work aims the development of a dedicated system for detection of burning in surface grinding process, where the process will constantly be monitored through the acoustic emission and electric power of the induction motor drive. Acquired by an analog-digital converter, algorithms process the signals and a control signal is generated to inform the operator or interrupt the process in case of burning occurrence. Moreover, the system makes possible the process monitoring via Internet. Additionally, a comparative study between parameters DPO and FKS is carried through. In the experimental work one type of. steel (ABNT-1020 annealed) and one type of grinding wheel referred to as TARGA, model ART 3TG80.3 NVHB, were employed.