929 resultados para Theorem of Ax


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The horizontal pullout capacity of vertical anchors embedded in sand has been determined by using an upper bound theorem of the limit analysis in combination with finite elements. The numerical results are presented in nondimensional form to determine the pullout resistance for various combinations of embedment ratio of the anchor (H/B), internal friction angle (ϕ) of sand, and the anchor-soil interface friction angle (δ). The pullout resistance increases with increases in the values of embedment ratio, friction angle of sand and anchor-soil interface friction angle. As compared to earlier reported solutions in literature, the present solution provides a better upper bound on the ultimate collapse load.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The vertical uplift resistance of long pipes buried in sands and subjected to pseudostatic seismic forces has been computed by using the lower-bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization. The soil mass is assumed to follow the Mohr-Coulomb failure criterion and an associated flow rule. The failure load is expressed in the form of a nondimensional uplift factor F-gamma. The variation of F-gamma is plotted as a function of the embedment ratio of the pipe, horizontal seismic acceleration coefficient (k(h)), and soil friction angle (phi). The magnitude of F-gamma is found to decrease continuously with an increase in the horizontal seismic acceleration coefficient. The reduction in the uplift resistance becomes quite significant, especially for greater values of embedment ratios and lower values of friction angle. The predicted uplift resistance was found to compare well with the existing results reported from the literature. (C) 2014 American Society of Civil Engineers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The pullout capacity of an inclined strip plate anchor embedded in sand has been determined by using the lower bound theorem of the limit analysis in combination with finite elements and linear optimization. The numerical results in the form of pullout factors have been presented by changing gradually the inclination of the plate from horizontal to vertical. The pullout resistance increases significantly with an increase in the horizontal inclination (theta) of the plate especially for theta > 30 degrees. The effect of the anchor plate-soil interface friction angle (delta) on the pullout resistance becomes extensive for a vertical anchor but remains insignificant for a horizontal anchor. The development of the failure zone around the anchor plates was also studied by varying theta and delta. The results from the analysis match well with the theoretical and experimental results reported in literature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ultimate bearing capacity of a circular footing, placed over a soil mass which is reinforced with horizontal layers of circular reinforcement sheets, has been determined by using the upper bound theorem of the limit analysis in conjunction with finite elements and linear optimization. For performing the analysis, three different soil media have been separately considered, namely, (i) fully granular, (ii) cohesive frictional, and (iii) fully cohesive with an additional provision to account for an increase of cohesion with depth. The reinforcement sheets are assumed to be structurally strong to resist axial tension but without having any resistance to bending; such an approximation usually holds good for geogrid sheets. The shear failure between the reinforcement sheet and adjoining soil mass has been considered. The increase in the magnitudes of the bearing capacity factors (N-c and N-gamma) with an inclusion of the reinforcement has been computed in terms of the efficiency factors eta(c) and eta(gamma). The results have been obtained (i) for different values of phi in case of fully granular (c=0) and c-phi soils, and (ii) for different rates (m) at which the cohesion increases with depth for a purely cohesive soil (phi=0 degrees). The critical positions and corresponding optimum diameter of the reinforcement sheets, for achieving the maximum bearing capacity, have also been established. The increase in the bearing capacity with an employment of the reinforcement increases continuously with an increase in phi. The improvement in the bearing capacity becomes quite extensive for two layers of the reinforcements as compared to the single layer of the reinforcement. The results obtained from the study are found to compare well with the available theoretical and experimental data reported in literature. (C) 2014 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

By using the lower-bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization, bearing-capacity factors, N-c and N-gamma q, with an inclusion of pseudostatic horizontal seismic body forces, have been determined for a shallow embedded horizontal strip footing placed on sloping ground surface. The variation of N-c and N-gamma q with changes in slope angle (beta) for different values of seismic acceleration coefficient (k(h)) has been obtained. The analysis reveals that irrespective of ground inclination and the embedment depth of the footing, the factors N-c and N-gamma q decrease quite considerably with an increase in k(h). As compared with N-c, the factor N-gamma q is affected more extensively with changes in k(h) and beta. Unlike most of the results reported in literature for the seismic case, the present computational results take into account the shear resistance of soil mass above the footing level. An increase in the depth of the embedment leads to an increase in the magnitudes of both N-c and N-gamma q. (C) 2014 American Society of Civil Engineers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A method is presented for determining the ultimate bearing capacity of a circular footing reinforced with a horizontal circular sheet of reinforcement placed over granular and cohesive-frictional soils. It was assumed that the reinforcement sheet could bear axial tension but not the bending moment. The analysis was performed based on the lower-bound theorem of the limit analysis in combination with finite elements and linear optimization. The present research is an extension of recent work with strip foundations reinforced with different layers of reinforcement. To incorporate the effect of the reinforcement, the efficiency factors eta(gamma) and eta(c), which need to be multiplied by the bearing capacity factors N-gamma and N-c, were established. Results were obtained for different values of the soil internal friction angle (phi). The optimal positions of the reinforcements, which would lead to a maximum improvement in the bearing capacity, were also determined. The variations of the axial tensile force in the reinforcement sheet at different radial distances from the center were also studied. The results of the analysis were compared with those available from literature. (C) 2014 American Society of Civil Engineers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ultimate bearing capacity of a circular footing, placed over rock mass, is evaluated by using the lower bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization. The generalized Hoek-Brown (HB) failure criterion, but by keeping a constant value of the exponent, alpha = 0.5, was used. The failure criterion was smoothened both in the meridian and pi planes. The nonlinear optimization was carried out by employing an interior point method based on the logarithmic barrier function. The results for the obtained bearing capacity were presented in a non-dimensional form for different values of GSI, m(i), sigma(ci)/(gamma b) and q/sigma(ci). Failure patterns were also examined for a few cases. For validating the results, computations were also performed for a strip footing as well. The results obtained from the analysis compare well with the data reported in literature. Since the equilibrium conditions are precisely satisfied only at the centroids of the elements, not everywhere in the domain, the obtained lower bound solution will be approximate not true. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Let l be any odd prime, and ζ a primitive l-th root of unity. Let C_l be the l-Sylow subgroup of the ideal class group of Q(ζ). The Teichmüller character w : Z_l → Z^*_l is given by w(x) = x (mod l), where w(x) is a p-1-st root of unity, and x ∈ Z_l. Under the action of this character, C_l decomposes as a direct sum of C^((i))_l, where C^((i))_l is the eigenspace corresponding to w^i. Let the order of C^((3))_l be l^h_3). The main result of this thesis is the following: For every n ≥ max( 1, h_3 ), the equation x^(ln) + y^(ln) + z^(ln) = 0 has no integral solutions (x,y,z) with l ≠ xyz. The same result is also proven with n ≥ max(1,h_5), under the assumption that C_l^((5)) is a cyclic group of order l^h_5. Applications of the methods used to prove the above results to the second case of Fermat's last theorem and to a Fermat-like equation in four variables are given.

The proof uses a series of ideas of H.S. Vandiver ([Vl],[V2]) along with a theorem of M. Kurihara [Ku] and some consequences of the proof of lwasawa's main conjecture for cyclotomic fields by B. Mazur and A. Wiles [MW]. In [V1] Vandiver claimed that the first case of Fermat's Last Theorem held for l if l did not divide the class number h^+ of the maximal real subfield of Q(e^(2πi/i)). The crucial gap in Vandiver's attempted proof that has been known to experts is explained, and complete proofs of all the results used from his papers are given.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The simplest multiplicative systems in which arithmetical ideas can be defined are semigroups. For such systems irreducible (prime) elements can be introduced and conditions under which the fundamental theorem of arithmetic holds have been investigated (Clifford (3)). After identifying associates, the elements of the semigroup form a partially ordered set with respect to the ordinary division relation. This suggests the possibility of an analogous arithmetical result for abstract partially ordered sets. Although nothing corresponding to product exists in a partially ordered set, there is a notion similar to g.c.d. This is the meet operation, defined as greatest lower bound. Thus irreducible elements, namely those elements not expressible as meets of proper divisors can be introduced. The assumption of the ascending chain condition then implies that each element is representable as a reduced meet of irreducibles. The central problem of this thesis is to determine conditions on the structure of the partially ordered set in order that each element have a unique such representation.

Part I contains preliminary results and introduces the principal tools of the investigation. In the second part, basic properties of the lattice of ideals and the connection between its structure and the irreducible decompositions of elements are developed. The proofs of these results are identical with the corresponding ones for the lattice case (Dilworth (2)). The last part contains those results whose proofs are peculiar to partially ordered sets and also contains the proof of the main theorem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Let F = Ǫ(ζ + ζ –1) be the maximal real subfield of the cyclotomic field Ǫ(ζ) where ζ is a primitive qth root of unity and q is an odd rational prime. The numbers u1=-1, uk=(ζk-k)/(ζ-ζ-1), k=2,…,p, p=(q-1)/2, are units in F and are called the cyclotomic units. In this thesis the sign distribution of the conjugates in F of the cyclotomic units is studied.

Let G(F/Ǫ) denote the Galoi's group of F over Ǫ, and let V denote the units in F. For each σϵ G(F/Ǫ) and μϵV define a mapping sgnσ: V→GF(2) by sgnσ(μ) = 1 iff σ(μ) ˂ 0 and sgnσ(μ) = 0 iff σ(μ) ˃ 0. Let {σ1, ... , σp} be a fixed ordering of G(F/Ǫ). The matrix Mq=(sgnσj(vi) ) , i, j = 1, ... , p is called the matrix of cyclotomic signatures. The rank of this matrix determines the sign distribution of the conjugates of the cyclotomic units. The matrix of cyclotomic signatures is associated with an ideal in the ring GF(2) [x] / (xp+ 1) in such a way that the rank of the matrix equals the GF(2)-dimension of the ideal. It is shown that if p = (q-1)/ 2 is a prime and if 2 is a primitive root mod p, then Mq is non-singular. Also let p be arbitrary, let ℓ be a primitive root mod q and let L = {i | 0 ≤ i ≤ p-1, the least positive residue of defined by ℓi mod q is greater than p}. Let Hq(x) ϵ GF(2)[x] be defined by Hq(x) = g. c. d. ((Σ xi/I ϵ L) (x+1) + 1, xp + 1). It is shown that the rank of Mq equals the difference p - degree Hq(x).

Further results are obtained by using the reciprocity theorem of class field theory. The reciprocity maps for a certain abelian extension of F and for the infinite primes in F are associated with the signs of conjugates. The product formula for the reciprocity maps is used to associate the signs of conjugates with the reciprocity maps at the primes which lie above (2). The case when (2) is a prime in F is studied in detail. Let T denote the group of totally positive units in F. Let U be the group generated by the cyclotomic units. Assume that (2) is a prime in F and that p is odd. Let F(2) denote the completion of F at (2) and let V(2) denote the units in F(2). The following statements are shown to be equivalent. 1) The matrix of cyclotomic signatures is non-singular. 2) U∩T = U2. 3) U∩F2(2) = U2. 4) V(2)/ V(2)2 = ˂v1 V(2)2˃ ʘ…ʘ˂vp V(2)2˃ ʘ ˂3V(2)2˃.

The rank of Mq was computed for 5≤q≤929 and the results appear in tables. On the basis of these results and additional calculations the following conjecture is made: If q and p = (q -1)/ 2 are both primes, then Mq is non-singular.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Let L be a finite geometric lattice of dimension n, and let w(k) denote the number of elements in L of rank k. Two theorems about the numbers w(k) are proved: first, w(k) ≥ w(1) for k = 2, 3, ..., n-1. Second, w(k) = w(1) if and only if k = n-1 and L is modular. Several corollaries concerning the "matching" of points and dual points are derived from these theorems.

Both theorems can be regarded as a generalization of a theorem of de Bruijn and Erdös concerning ʎ= 1 designs. The second can also be considered as the converse to a special case of Dilworth's theorem on finite modular lattices.

These results are related to two conjectures due to G. -C. Rota. The "unimodality" conjecture states that the w(k)'s form a unimodal sequence. The "Sperner" conjecture states that a set of non-comparable elements in L has cardinality at most max/k {w(k)}. In this thesis, a counterexample to the Sperner conjecture is exhibited.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main result of the note is a characterization of 1-amenability of Banach algebras of approximable operators for a class of Banach spaces with 1-unconditional bases in terms of a new basis property. It is also shown that amenability and symmetric amenability are equivalent concepts for Banach algebras of approximable operators, and that a type of Banach space that was long suspected to lack property A has in fact the property. Some further ideas on the problem of whether or not amenability (in this setting) implies property A are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A theorem of Lusin is proved in the non-ordered context of JB*-triples. This is applied to obtain versions of a general transitivity theorem and to deduce refinements of facial structure in closed unit ballls of JB*-triples and duals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fermentation of three arabinoxylan (AX) fractions from wheat by the human fecal microflora was investigated in vitro. Three AX fractions, with average molecular masses of 354, 278, and 66 kDa, were incorporated into miniature-scale batch cultures (with inulin as a positive prebiotic control) with feces from three healthy donors, aged 23-29. Microflora changes were monitored by the culture-independent technique, fluorescent in situ hybridization, and short chain fatty acid (SCFA) and lactic acid production were measured by high-performance liquid chromatography. Total cell numbers increased significantly in all treated cultures, and the fermentation of AX was associated with a proliferation of the bifidobacteria, lactobacilli, and eubacteria groups. Smaller but statistically significant increases in bacteroides and clostridia groups were also observed. All AX fractions had comparable bifidogenic impacts on the microflora at 5 and 12 h, but the 66 kDa AX was particularly selective for lactobacilli. Eubacteria increased significantly on all AX fractions, particularly on 66 kDa AX. As previously reported, inulin gave a selective increase in bifidobacteria. All supplemented cultures showed significant rises in total SCFA production, with a particularly high proportion of butyric acid being produced from AX fermentation. The prebiotic effect, that is, the selectivity of AX for bifidobacteria and lactobacilli groups, increased as the molecular mass of the AX decreased. This suggests that molecular mass may influence the fermentation of AX in the colon.