967 resultados para Théorie des graphes
Resumo:
Il est possible de modéliser la trame temporelle d’une histoire à l’aide de courbes paramétrées et la juxtaposition de ces différentes courbes permet la construction de graphes. Ce modèle peut servir à la fois à comprendre certaines histoires et à explorer de nouvelles narrations possibles basées sur ces graphes. Dans ce mémoire, nous présentons ce modèle de pair avec les notions mathématiques sur lesquelles il se base. Finalement, nous explorons des différentes narrations possibles qui apparaissent lorsque nous considérons ces graphes sur différentes surfaces.
Resumo:
Notre étude porte sur la manière dont les chercheurs universitaires junior et senior en sciences sociales au Québec établissent leurs réseaux de cosignataires et donnent une interprétation discursive à leurs activités de collaboration face à l'impact du changement institutionnel universitaire pendant la période 1990-2009. Plus spécifiquement, notre recherche s'intéresse à montrer que la création des réseaux et la collaboration scientifique par cosignature peuvent être identifiées comme des « ajustements professionnels » et se présenter aussi comme une ressource du capital social qui peut être mobilisé et qui peut produire des avantages aux chercheurs en accord avec leur statut junior ou senior. Il s’agit donc d’une recherche qui relève de la sociologie des sciences. Notre approche a été opérationnalisée à partir de l'étude de 15 membres d'un centre de recherche universitaire au Québec, et leur réseau de 447 cosignataires (y compris les chercheurs de l'étude), et à travers l'application de 7 entretiens auprès de chercheurs junior et senior du même centre. Dans le même plan opérationnel, depuis une perspective qualitative, la thèse permet d'identifier le sens discursif que les chercheurs fournissent à la collaboration et à la participation en réseaux de cosignatures. Ensuite, depuis l'analyse structurelle des réseaux, notre étude montre les connexions individuelles et leurs formes d'interprétation — spécialement la théorie des graphes et ses mesures de centralité (la centralité de degré, la centralité d’intermédiarité et la centralité de vecteur propre) — de même que l'homophilie par statut entre chercheurs. Enfin, depuis l'analyse statistique, elle montre la corrélation des périodes de l'étude et des attributs socioprofessionnels des chercheurs étudiés (sexe, statut universitaire, affiliation institutionnelle, discipline d’appartenance, pays, région du Canada et ville de travail). Notamment, les résultats de notre thèse montrent que chaque catégorie de chercheurs possède ses propres particularités structurelles et discursives en ce qui a trait à ses pratiques de collaboration en réseau, et vont confirmer que les chercheurs senior, plus que les chercheurs junior, grâce à leur capital social mobilisé, ont conservé et obtenu plus d'avantages de leur réseau de cosignataires afin de s'adapter au changement institutionnel et mieux gérer leur travail de collaboration destiné à l’espace international, mais surtout à l'espace local.
Resumo:
L’ontologie de Leśniewski est un calcul général des noms. Elle fut créée par Leśniewski pour apporter une solution naturelle au paradoxe de Russell en théorie naïve des ensembles. L’ontologie a été perçue par ses défenseurs et par ses adversaires comme une théorie incompatible avec la théorie des ensembles. Dans le présent texte, nous montrons que l’ontologie de Leśniewski permet, au contraire, de définir une théorie des ensembles qui coïncide avec la théorie de Zermelo- Fraenkel.
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
How do sportspeople succeed in a non-collaborative game? An illustration of a perverse side effect of altruism Are team sports specialists predisposed to collaboration? The scientific literature on this topic is divided. The present article attempts to end this debate by applying experimental game theory. We constituted three groups of volunteers (all students aged around 20): 25 team sports specialists; 23 individual sports specialists (gymnasts, track & field athletes and swimmers) and a control group of 24 non-sportspeople. Each subgroup was divided into 3 teams that played against each other in turn (and not against teams from other subgroups). The teams played a game based on the well-known Prisoner's Dilemma (Tucker, 1950) - the paradoxical "Bluegill Sunbass Game" (Binmore, 1999) with three Nash equilibria (two suboptimal equilibria with a pure strategy and an optimal equilibrium with a mixed, egotistical strategy (p= 1/2)). This game also features a Harsanyi equilibrium (based on constant compliance with a moral code and altruism by empathy: "do not unto others that which you would not have them do unto you"). How, then, was the game played? Two teams of 8 competed on a handball court. Each team wore a distinctive jersey. The game lasted 15 minutes and the players were allowed to touch the handball ball with their feet or hands. After each goal, each team had to return to its own half of the court. Players were allowed to score in either goal and thus cooperate with their teammates or not, as they saw fit. A goal against the nominally opposing team (a "guardian" strategy, by analogy with the Bluegill Sunbass Game) earned a point for everyone in the team. For an own goal (a "sneaker" strategy), only the scorer earned a point - hence the paradox. If all the members of a team work together to score a goal, everyone is happy (the Harsanyi solution). However, the situation was not balanced in the Nashian sense: each player had a reason to be disloyal to his/her team at the merest opportunity. But if everyone adopts a "sneaker" strategy, the game becomes a free-for-all and the chances of scoring become much slimmer. In a context in which doubt reigns as to the honesty of team members and "legal betrayals", what type of sportsperson will score the most goals? By analogy with the Bluegill Sunbass Game, we recorded direct motor interactions (passes and shots) based on either a "guardian" tactic (i.e. collaboration within the team) or a "sneaker" tactic (shots and passes against the player's designated team). So, was the group of team sports specialist more collaborative than the other two groups? The answer was no. A statistical analysis (difference from chance in a logistic regression) enabled us to draw three conclusions: ?For the team sports specialists, the Nash equilibrium (1950) was stronger than the Harsanyi equilibrium (1977). ?The sporting principles of equilibrium and exclusivity are not appropriate in the Bluegill Sunbass Game and are quickly abandoned by the team sports specialists. The latter are opportunists who focus solely on winning and do well out of it. ?The most altruistic players are the main losers in the Bluegill Sunbass Game: they keep the game alive but contribute to their own defeat. In our experiment, the most altruistic players tended to be the females and the individual sports specialists
Resumo:
How do sportspeople succeed in a non-collaborative game? An illustration of a perverse side effect of altruism Are team sports specialists predisposed to collaboration? The scientific literature on this topic is divided. The present article attempts to end this debate by applying experimental game theory. We constituted three groups of volunteers (all students aged around 20): 25 team sports specialists; 23 individual sports specialists (gymnasts, track & field athletes and swimmers) and a control group of 24 non-sportspeople. Each subgroup was divided into 3 teams that played against each other in turn (and not against teams from other subgroups). The teams played a game based on the well-known Prisoner's Dilemma (Tucker, 1950) - the paradoxical "Bluegill Sunbass Game" (Binmore, 1999) with three Nash equilibria (two suboptimal equilibria with a pure strategy and an optimal equilibrium with a mixed, egotistical strategy (p= 1/2)). This game also features a Harsanyi equilibrium (based on constant compliance with a moral code and altruism by empathy: "do not unto others that which you would not have them do unto you"). How, then, was the game played? Two teams of 8 competed on a handball court. Each team wore a distinctive jersey. The game lasted 15 minutes and the players were allowed to touch the handball ball with their feet or hands. After each goal, each team had to return to its own half of the court. Players were allowed to score in either goal and thus cooperate with their teammates or not, as they saw fit. A goal against the nominally opposing team (a "guardian" strategy, by analogy with the Bluegill Sunbass Game) earned a point for everyone in the team. For an own goal (a "sneaker" strategy), only the scorer earned a point - hence the paradox. If all the members of a team work together to score a goal, everyone is happy (the Harsanyi solution). However, the situation was not balanced in the Nashian sense: each player had a reason to be disloyal to his/her team at the merest opportunity. But if everyone adopts a "sneaker" strategy, the game becomes a free-for-all and the chances of scoring become much slimmer. In a context in which doubt reigns as to the honesty of team members and "legal betrayals", what type of sportsperson will score the most goals? By analogy with the Bluegill Sunbass Game, we recorded direct motor interactions (passes and shots) based on either a "guardian" tactic (i.e. collaboration within the team) or a "sneaker" tactic (shots and passes against the player's designated team). So, was the group of team sports specialist more collaborative than the other two groups? The answer was no. A statistical analysis (difference from chance in a logistic regression) enabled us to draw three conclusions: ?For the team sports specialists, the Nash equilibrium (1950) was stronger than the Harsanyi equilibrium (1977). ?The sporting principles of equilibrium and exclusivity are not appropriate in the Bluegill Sunbass Game and are quickly abandoned by the team sports specialists. The latter are opportunists who focus solely on winning and do well out of it. ?The most altruistic players are the main losers in the Bluegill Sunbass Game: they keep the game alive but contribute to their own defeat. In our experiment, the most altruistic players tended to be the females and the individual sports specialists
Resumo:
How do sportspeople succeed in a non-collaborative game? An illustration of a perverse side effect of altruism Are team sports specialists predisposed to collaboration? The scientific literature on this topic is divided. The present article attempts to end this debate by applying experimental game theory. We constituted three groups of volunteers (all students aged around 20): 25 team sports specialists; 23 individual sports specialists (gymnasts, track & field athletes and swimmers) and a control group of 24 non-sportspeople. Each subgroup was divided into 3 teams that played against each other in turn (and not against teams from other subgroups). The teams played a game based on the well-known Prisoner's Dilemma (Tucker, 1950) - the paradoxical "Bluegill Sunbass Game" (Binmore, 1999) with three Nash equilibria (two suboptimal equilibria with a pure strategy and an optimal equilibrium with a mixed, egotistical strategy (p= 1/2)). This game also features a Harsanyi equilibrium (based on constant compliance with a moral code and altruism by empathy: "do not unto others that which you would not have them do unto you"). How, then, was the game played? Two teams of 8 competed on a handball court. Each team wore a distinctive jersey. The game lasted 15 minutes and the players were allowed to touch the handball ball with their feet or hands. After each goal, each team had to return to its own half of the court. Players were allowed to score in either goal and thus cooperate with their teammates or not, as they saw fit. A goal against the nominally opposing team (a "guardian" strategy, by analogy with the Bluegill Sunbass Game) earned a point for everyone in the team. For an own goal (a "sneaker" strategy), only the scorer earned a point - hence the paradox. If all the members of a team work together to score a goal, everyone is happy (the Harsanyi solution). However, the situation was not balanced in the Nashian sense: each player had a reason to be disloyal to his/her team at the merest opportunity. But if everyone adopts a "sneaker" strategy, the game becomes a free-for-all and the chances of scoring become much slimmer. In a context in which doubt reigns as to the honesty of team members and "legal betrayals", what type of sportsperson will score the most goals? By analogy with the Bluegill Sunbass Game, we recorded direct motor interactions (passes and shots) based on either a "guardian" tactic (i.e. collaboration within the team) or a "sneaker" tactic (shots and passes against the player's designated team). So, was the group of team sports specialist more collaborative than the other two groups? The answer was no. A statistical analysis (difference from chance in a logistic regression) enabled us to draw three conclusions: ?For the team sports specialists, the Nash equilibrium (1950) was stronger than the Harsanyi equilibrium (1977). ?The sporting principles of equilibrium and exclusivity are not appropriate in the Bluegill Sunbass Game and are quickly abandoned by the team sports specialists. The latter are opportunists who focus solely on winning and do well out of it. ?The most altruistic players are the main losers in the Bluegill Sunbass Game: they keep the game alive but contribute to their own defeat. In our experiment, the most altruistic players tended to be the females and the individual sports specialists
Resumo:
Mode of access: Internet.
Resumo:
Indice.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Part. 1.
Resumo:
Mode of access: Internet.