979 resultados para Text-mining
Resumo:
The goal of the project is to analyze, experiment, and develop intelligent, interactive and multilingual Text Mining technologies, as a key element of the next generation of search engines, systems with the capacity to find "the need behind the query". This new generation will provide specialized services and interfaces according to the search domain and type of information needed. Moreover, it will integrate textual search (websites) and multimedia search (images, audio, video), it will be able to find and organize information, rather than generating ranked lists of websites.
Resumo:
In this demo the basic text mining technologies by using RapidMining have been reviewed. RapidMining basic characteristics and operators of text mining have been described. Text mining example by using Navie Bayes algorithm and process modeling have been revealed.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
With the dramatic growth of text information, there is an increasing need for powerful text mining systems that can automatically discover useful knowledge from text. Text is generally associated with all kinds of contextual information. Those contexts can be explicit, such as the time and the location where a blog article is written, and the author(s) of a biomedical publication, or implicit, such as the positive or negative sentiment that an author had when she wrote a product review; there may also be complex context such as the social network of the authors. Many applications require analysis of topic patterns over different contexts. For instance, analysis of search logs in the context of the user can reveal how we can improve the quality of a search engine by optimizing the search results according to particular users; analysis of customer reviews in the context of positive and negative sentiments can help the user summarize public opinions about a product; analysis of blogs or scientific publications in the context of a social network can facilitate discovery of more meaningful topical communities. Since context information significantly affects the choices of topics and language made by authors, in general, it is very important to incorporate it into analyzing and mining text data. In general, modeling the context in text, discovering contextual patterns of language units and topics from text, a general task which we refer to as Contextual Text Mining, has widespread applications in text mining. In this thesis, we provide a novel and systematic study of contextual text mining, which is a new paradigm of text mining treating context information as the ``first-class citizen.'' We formally define the problem of contextual text mining and its basic tasks, and propose a general framework for contextual text mining based on generative modeling of text. This conceptual framework provides general guidance on text mining problems with context information and can be instantiated into many real tasks, including the general problem of contextual topic analysis. We formally present a functional framework for contextual topic analysis, with a general contextual topic model and its various versions, which can effectively solve the text mining problems in a lot of real world applications. We further introduce general components of contextual topic analysis, by adding priors to contextual topic models to incorporate prior knowledge, regularizing contextual topic models with dependency structure of context, and postprocessing contextual patterns to extract refined patterns. The refinements on the general contextual topic model naturally lead to a variety of probabilistic models which incorporate different types of context and various assumptions and constraints. These special versions of the contextual topic model are proved effective in a variety of real applications involving topics and explicit contexts, implicit contexts, and complex contexts. We then introduce a postprocessing procedure for contextual patterns, by generating meaningful labels for multinomial context models. This method provides a general way to interpret text mining results for real users. By applying contextual text mining in the ``context'' of other text information management tasks, including ad hoc text retrieval and web search, we further prove the effectiveness of contextual text mining techniques in a quantitative way with large scale datasets. The framework of contextual text mining not only unifies many explorations of text analysis with context information, but also opens up many new possibilities for future research directions in text mining.
Resumo:
Following the workshop on new developments in daily licensing practice in November 2011, we brought together fourteen representatives from national consortia (from Denmark, Germany, Netherlands and the UK) and publishers (Elsevier, SAGE and Springer) met in Copenhagen on 9 March 2012 to discuss provisions in licences to accommodate new developments. The one day workshop aimed to: present background and ideas regarding the provisions KE Licensing Expert Group developed; introduce and explain the provisions the invited publishers currently use;ascertain agreement on the wording for long term preservation, continuous access and course packs; give insight and more clarity about the use of open access provisions in licences; discuss a roadmap for inclusion of the provisions in the publishers’ licences; result in report to disseminate the outcome of the meeting. Participants of the workshop were: United Kingdom: Lorraine Estelle (Jisc Collections) Denmark: Lotte Eivor Jørgensen (DEFF), Lone Madsen (Southern University of Denmark), Anne Sandfær (DEFF/Knowledge Exchange) Germany: Hildegard Schaeffler (Bavarian State Library), Markus Brammer (TIB) The Netherlands: Wilma Mossink (SURF), Nol Verhagen (University of Amsterdam), Marc Dupuis (SURF/Knowledge Exchange) Publishers: Alicia Wise (Elsevier), Yvonne Campfens (Springer), Bettina Goerner (Springer), Leo Walford (Sage) Knowledge Exchange: Keith Russell The main outcome of the workshop was that it would be valuable to have a standard set of clauses which could used in negotiations, this would make concluding licences a lot easier and more efficient. The comments on the model provisions the Licensing Expert group had drafted will be taken into account and the provisions will be reformulated. Data and text mining is a new development and demand for access to allow for this is growing. It would be easier if there was a simpler way to access materials so they could be more easily mined. However there are still outstanding questions on how authors of articles that have been mined can be properly attributed.
Resumo:
Double Degree
Resumo:
R.TeMiS (R Text MIning Solution) (Bouchet-Valat & Bastin, 2013) es un paquete de R (RcmdrPlugin.temis) (Bouchet-Valat, 2016), concebido como plugin de R Commander, que permite analizar, manipular y crear corpus de textos (Garnier, 2014). La arquitectura estadística de RTemis corre a cargo del paquete tm desarrollado por Ingo Feinerer (Feinerer, 2008 ; 2011 ; Feinerer, Hornik y Meyer, 2008). R.TeMiS se ha completado con otros paquetes clásicos de R, como el paquete para la representación de los análisis factoriales de correspondencias de Nenadic y Greenacre (2007). También se han desarrollado paquetes específicos para facilitar el uso de R.TeMiS en los estudios de prensa, por ejemplo para la gestión de los corpus de artículos de prensa de la base de datos Factiva. R.TeMiS se presenta como un plugin de R Commander, desarrollado por Fox (2005), lo cual facilita su utilización para los no usuarios de R.
Resumo:
Worldwide companies currently make a significant effort in performing the materiality analysis, whose aim is to explain corporate sustainability in an annual report. Materiality reflects what are the most important social, economic and environmental issues for a company and its stakeholders. Many studies and standards have been proposed to establish what are the main steps to follow to identify the specific topics to be included in a sustainability report. However, few existing quantitative and structured approaches help understanding how to deal with the identified topics and how to prioritise them to effectively show the most valuable ones. Moreover, the use of traditional approaches involves a long-lasting and complex procedure where a lot of people have to be reached and interviewed and several companies' reports have to be read to extrapolate the material topics to be discussed in the sustainability report. This dissertation aims to propose an automated mechanism to gather stakeholders and the company's opinions identifying relevant issues. To accomplish this purpose, text mining techniques are exploited to analyse textual documents written by either a stakeholder or the reporting company. It is then extracted a measure of how much a document deals with some defined topics. This kind of information is finally manipulated to prioritise topics based on how the author's opinion matters. The entire work is based upon a real case study in the domain of telecommunications.
Resumo:
Poiché la nostra conoscenza collettiva continua ad essere digitalizzata e memorizzata, diventa più difficile trovare e scoprire ciò che stiamo cercando. Abbiamo bisogno di nuovi strumenti computazionali per aiutare a organizzare, rintracciare e comprendere queste vaste quantità di informazioni. I modelli di linguaggio sono potenti strumenti che possono essere impiegati per estrarre conoscenza statisticamente significativa ed interpretabile tramite apprendimento non supervisionato, testuali o nel codice sorgente. L’obiettivo di questa tesi è impiegare una metodologia di descriptive text mining, denominata POIROT, per analizzare i rapporti medici del dataset Adverse Drug Reaction (ADE). Si vogliono stabilire delle correlazioni significative che permettano di comprendere le ragioni per cui un determinato rapporto medico fornisca o meno informazioni relative a effetti collaterali dovuti all’assunzione di determinati farmaci.
Resumo:
Il problema relativo alla predizione, la ricerca di pattern predittivi all‘interno dei dati, è stato studiato ampiamente. Molte metodologie robuste ed efficienti sono state sviluppate, procedimenti che si basano sull‘analisi di informazioni numeriche strutturate. Quella testuale, d‘altro canto, è una tipologia di informazione fortemente destrutturata. Quindi, una immediata conclusione, porterebbe a pensare che per l‘analisi predittiva su dati testuali sia necessario sviluppare metodi completamente diversi da quelli ben noti dalle tecniche di data mining. Un problema di predizione può essere risolto utilizzando invece gli stessi metodi : dati testuali e documenti possono essere trasformati in valori numerici, considerando per esempio l‘assenza o la presenza di termini, rendendo di fatto possibile una utilizzazione efficiente delle tecniche già sviluppate. Il text mining abilita la congiunzione di concetti da campi di applicazione estremamente eterogenei. Con l‘immensa quantità di dati testuali presenti, basti pensare, sul World Wide Web, ed in continua crescita a causa dell‘utilizzo pervasivo di smartphones e computers, i campi di applicazione delle analisi di tipo testuale divengono innumerevoli. L‘avvento e la diffusione dei social networks e della pratica di micro blogging abilita le persone alla condivisione di opinioni e stati d‘animo, creando un corpus testuale di dimensioni incalcolabili aggiornato giornalmente. Le nuove tecniche di Sentiment Analysis, o Opinion Mining, si occupano di analizzare lo stato emotivo o la tipologia di opinione espressa all‘interno di un documento testuale. Esse sono discipline attraverso le quali, per esempio, estrarre indicatori dello stato d‘animo di un individuo, oppure di un insieme di individui, creando una rappresentazione dello stato emotivo sociale. L‘andamento dello stato emotivo sociale può condizionare macroscopicamente l‘evolvere di eventi globali? Studi in campo di Economia e Finanza Comportamentale assicurano un legame fra stato emotivo, capacità nel prendere decisioni ed indicatori economici. Grazie alle tecniche disponibili ed alla mole di dati testuali continuamente aggiornati riguardanti lo stato d‘animo di milioni di individui diviene possibile analizzare tali correlazioni. In questo studio viene costruito un sistema per la previsione delle variazioni di indici di borsa, basandosi su dati testuali estratti dalla piattaforma di microblogging Twitter, sotto forma di tweets pubblici; tale sistema include tecniche di miglioramento della previsione basate sullo studio di similarità dei testi, categorizzandone il contributo effettivo alla previsione.
Resumo:
Large amounts of animal health care data are present in veterinary electronic medical records (EMR) and they present an opportunity for companion animal disease surveillance. Veterinary patient records are largely in free-text without clinical coding or fixed vocabulary. Text-mining, a computer and information technology application, is needed to identify cases of interest and to add structure to the otherwise unstructured data. In this study EMR's were extracted from veterinary management programs of 12 participating veterinary practices and stored in a data warehouse. Using commercially available text-mining software (WordStat™), we developed a categorization dictionary that could be used to automatically classify and extract enteric syndrome cases from the warehoused electronic medical records. The diagnostic accuracy of the text-miner for retrieving cases of enteric syndrome was measured against human reviewers who independently categorized a random sample of 2500 cases as enteric syndrome positive or negative. Compared to the reviewers, the text-miner retrieved cases with enteric signs with a sensitivity of 87.6% (95%CI, 80.4-92.9%) and a specificity of 99.3% (95%CI, 98.9-99.6%). Automatic and accurate detection of enteric syndrome cases provides an opportunity for community surveillance of enteric pathogens in companion animals.
Resumo:
Target identification for tractography studies requires solid anatomical knowledge validated by an extensive literature review across species for each seed structure to be studied. Manual literature review to identify targets for a given seed region is tedious and potentially subjective. Therefore, complementary approaches would be useful. We propose to use text-mining models to automatically suggest potential targets from the neuroscientific literature, full-text articles and abstracts, so that they can be used for anatomical connection studies and more specifically for tractography. We applied text-mining models to three structures: two well-studied structures, since validated deep brain stimulation targets, the internal globus pallidus and the subthalamic nucleus and, the nucleus accumbens, an exploratory target for treating psychiatric disorders. We performed a systematic review of the literature to document the projections of the three selected structures and compared it with the targets proposed by text-mining models, both in rat and primate (including human). We ran probabilistic tractography on the nucleus accumbens and compared the output with the results of the text-mining models and literature review. Overall, text-mining the literature could find three times as many targets as two man-weeks of curation could. The overall efficiency of the text-mining against literature review in our study was 98% recall (at 36% precision), meaning that over all the targets for the three selected seeds, only one target has been missed by text-mining. We demonstrate that connectivity for a structure of interest can be extracted from a very large amount of publications and abstracts. We believe this tool will be useful in helping the neuroscience community to facilitate connectivity studies of particular brain regions. The text mining tools used for the study are part of the HBP Neuroinformatics Platform, publicly available at http://connectivity-brainer.rhcloud.com/.