898 resultados para Text mining, Classificazione, Stemming, Text categorization
Resumo:
With the overwhelming increase in the amount of texts on the web, it is almost impossible for people to keep abreast of up-to-date information. Text mining is a process by which interesting information is derived from text through the discovery of patterns and trends. Text mining algorithms are used to guarantee the quality of extracted knowledge. However, the extracted patterns using text or data mining algorithms or methods leads to noisy patterns and inconsistency. Thus, different challenges arise, such as the question of how to understand these patterns, whether the model that has been used is suitable, and if all the patterns that have been extracted are relevant. Furthermore, the research raises the question of how to give a correct weight to the extracted knowledge. To address these issues, this paper presents a text post-processing method, which uses a pattern co-occurrence matrix to find the relation between extracted patterns in order to reduce noisy patterns. The main objective of this paper is not only reducing the number of closed sequential patterns, but also improving the performance of pattern mining as well. The experimental results on Reuters Corpus Volume 1 data collection and TREC filtering topics show that the proposed method is promising.
Resumo:
Over the last decade, the majority of existing search techniques is either keyword- based or category-based, resulting in unsatisfactory effectiveness. Meanwhile, studies have illustrated that more than 80% of users preferred personalized search results. As a result, many studies paid a great deal of efforts (referred to as col- laborative filtering) investigating on personalized notions for enhancing retrieval performance. One of the fundamental yet most challenging steps is to capture precise user information needs. Most Web users are inexperienced or lack the capability to express their needs properly, whereas the existent retrieval systems are highly sensitive to vocabulary. Researchers have increasingly proposed the utilization of ontology-based tech- niques to improve current mining approaches. The related techniques are not only able to refine search intentions among specific generic domains, but also to access new knowledge by tracking semantic relations. In recent years, some researchers have attempted to build ontological user profiles according to discovered user background knowledge. The knowledge is considered to be both global and lo- cal analyses, which aim to produce tailored ontologies by a group of concepts. However, a key problem here that has not been addressed is: how to accurately match diverse local information to universal global knowledge. This research conducts a theoretical study on the use of personalized ontolo- gies to enhance text mining performance. The objective is to understand user information needs by a \bag-of-concepts" rather than \words". The concepts are gathered from a general world knowledge base named the Library of Congress Subject Headings. To return desirable search results, a novel ontology-based mining approach is introduced to discover accurate search intentions and learn personalized ontologies as user profiles. The approach can not only pinpoint users' individual intentions in a rough hierarchical structure, but can also in- terpret their needs by a set of acknowledged concepts. Along with global and local analyses, another solid concept matching approach is carried out to address about the mismatch between local information and world knowledge. Relevance features produced by the Relevance Feature Discovery model, are determined as representatives of local information. These features have been proven as the best alternative for user queries to avoid ambiguity and consistently outperform the features extracted by other filtering models. The two attempt-to-proposed ap- proaches are both evaluated by a scientific evaluation with the standard Reuters Corpus Volume 1 testing set. A comprehensive comparison is made with a num- ber of the state-of-the art baseline models, including TF-IDF, Rocchio, Okapi BM25, the deploying Pattern Taxonomy Model, and an ontology-based model. The gathered results indicate that the top precision can be improved remarkably with the proposed ontology mining approach, where the matching approach is successful and achieves significant improvements in most information filtering measurements. This research contributes to the fields of ontological filtering, user profiling, and knowledge representation. The related outputs are critical when systems are expected to return proper mining results and provide personalized services. The scientific findings have the potential to facilitate the design of advanced preference mining models, where impact on people's daily lives.
Resumo:
This project is a step forward in the study of text mining where enhanced text representation with semantic information plays a significant role. It develops effective methods of entity-oriented retrieval, semantic relation identification and text clustering utilizing semantically annotated data. These methods are based on enriched text representation generated by introducing semantic information extracted from Wikipedia into the input text data. The proposed methods are evaluated against several start-of-art benchmarking methods on real-life data-sets. In particular, this thesis improves the performance of entity-oriented retrieval, identifies different lexical forms for an entity relation and handles clustering documents with multiple feature spaces.
Resumo:
It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of large scale terms and data patterns. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, there has been often held the hypothesis that pattern-based methods should perform better than term-based ones in describing user preferences; yet, how to effectively use large scale patterns remains a hard problem in text mining. To make a breakthrough in this challenging issue, this paper presents an innovative model for relevance feature discovery. It discovers both positive and negative patterns in text documents as higher level features and deploys them over low-level features (terms). It also classifies terms into categories and updates term weights based on their specificity and their distributions in patterns. Substantial experiments using this model on RCV1, TREC topics and Reuters-21578 show that the proposed model significantly outperforms both the state-of-the-art term-based methods and the pattern based methods.
Resumo:
Background The requirement for dual screening of titles and abstracts to select papers to examine in full text can create a huge workload, not least when the topic is complex and a broad search strategy is required, resulting in a large number of results. An automated system to reduce this burden, while still assuring high accuracy, has the potential to provide huge efficiency savings within the review process. Objectives To undertake a direct comparison of manual screening with a semi‐automated process (priority screening) using a machine classifier. The research is being carried out as part of the current update of a population‐level public health review. Methods Authors have hand selected studies for the review update, in duplicate, using the standard Cochrane Handbook methodology. A retrospective analysis, simulating a quasi‐‘active learning’ process (whereby a classifier is repeatedly trained based on ‘manually’ labelled data) will be completed, using different starting parameters. Tests will be carried out to see how far different training sets, and the size of the training set, affect the classification performance; i.e. what percentage of papers would need to be manually screened to locate 100% of those papers included as a result of the traditional manual method. Results From a search retrieval set of 9555 papers, authors excluded 9494 papers at title/abstract and 52 at full text, leaving 9 papers for inclusion in the review update. The ability of the machine classifier to reduce the percentage of papers that need to be manually screened to identify all the included studies, under different training conditions, will be reported. Conclusions The findings of this study will be presented along with an estimate of any efficiency gains for the author team if the screening process can be semi‐automated using text mining methodology, along with a discussion of the implications for text mining in screening papers within complex health reviews.
Resumo:
With the explosion of information resources, there is an imminent need to understand interesting text features or topics in massive text information. This thesis proposes a theoretical model to accurately weight specific text features, such as patterns and n-grams. The proposed model achieves impressive performance in two data collections, Reuters Corpus Volume 1 (RCV1) and Reuters 21578.
Resumo:
We address the problem of mining interesting phrases from subsets of a text corpus where the subset is specified using a set of features such as keywords that form a query. Previous algorithms for the problem have proposed solutions that involve sifting through a phrase dictionary based index or a document-based index where the solution is linear in either the phrase dictionary size or the size of the document subset. We propose the usage of an independence assumption between query keywords given the top correlated phrases, wherein the pre-processing could be reduced to discovering phrases from among the top phrases per each feature in the query. We then outline an indexing mechanism where per-keyword phrase lists are stored either in disk or memory, so that popular aggregation algorithms such as No Random Access and Sort-merge Join may be adapted to do the scoring at real-time to identify the top interesting phrases. Though such an approach is expected to be approximate, we empirically illustrate that very high accuracies (of over 90%) are achieved against the results of exact algorithms. Due to the simplified list-aggregation, we are also able to provide response times that are orders of magnitude better than state-of-the-art algorithms. Interestingly, our disk-based approach outperforms the in-memory baselines by up to hundred times and sometimes more, confirming the superiority of the proposed method.
Resumo:
Actualmente, com a massificação da utilização das redes sociais, as empresas passam a sua mensagem nos seus canais de comunicação, mas os consumidores dão a sua opinião sobre ela. Argumentam, opinam, criticam (Nardi, Schiano, Gumbrecht, & Swartz, 2004). Positiva ou negativamente. Neste contexto o Text Mining surge como uma abordagem interessante para a resposta à necessidade de obter conhecimento a partir dos dados existentes. Neste trabalho utilizámos um algoritmo de Clustering hierárquico com o objectivo de descobrir temas distintos num conjunto de tweets obtidos ao longo de um determinado período de tempo para as empresas Burger King e McDonald’s. Com o intuito de compreender o sentimento associado a estes temas foi feita uma análise de sentimentos a cada tema encontrado, utilizando um algoritmo Bag-of-Words. Concluiu-se que o algoritmo de Clustering foi capaz de encontrar temas através do tweets obtidos, essencialmente ligados a produtos e serviços comercializados pelas empresas. O algoritmo de Sentiment Analysis atribuiu um sentimento a esses temas, permitindo compreender de entre os produtos/serviços identificados quais os que obtiveram uma polaridade positiva ou negativa, e deste modo sinalizar potencias situações problemáticas na estratégia das empresas, e situações positivas passíveis de identificação de decisões operacionais bem-sucedidas.
Resumo:
This class introduces basics of web mining and information retrieval including, for example, an introduction to the Vector Space Model and Text Mining. Guest Lecturer: Dr. Michael Granitzer Optional: Modeling the Internet and the Web: Probabilistic Methods and Algorithms, Pierre Baldi, Paolo Frasconi, Padhraic Smyth, Wiley, 2003 (Chapter 4, Text Analysis)