942 resultados para Temporal frequency
Resumo:
PURPOSE. To investigate the effect of age on optokinetic nystagmus (OKN) in response to stimuli designed to preferentially stimulate the M-pathway. METHOD. OKN was recorded in 10 younger (32.3 +/- 5.98 years) and 10 older (65.6 +/- 6.53) subjects with normal vision. Vertical gratings of 0.43 or 1.08 cpd drifting at 5 degrees/s or 20 degrees/s and presented at either 8% or 80% contrast were displayed on a large screen as full-field stimulation, central stimulation within a central Gaussian-blurred window of 15 diameter, or peripheral stimulation outside this window. All conditions apart from the high-contrast condition were presented in a random order at two light levels, mesopic (1.8 cdm(-2)) and photopic (71.5 cdm(-2)). RESULTS. Partial-field data indicated that central stimulation, mesopic light levels, and lower temporal frequency each significantly increased slow-phase velocity (SPV). Although there was no overall difference between groups for partial-field stimulation, full-field stimulation, or low-contrast stimulation, a change in illumination revealed a significant interaction with age: there was a larger decrease in SPV going from photopic to mesopic conditions for the older group than the younger group, especially for higher temporal frequency stimulation. CONCLUSIONS. OKN becomes reflexive in conditions conducive to M-pathway stimulation, and this rOKN response is significantly diminished in older healthy adults than in younger healthy adults, indicative of decreased M-pathway sensitivity.
Resumo:
A fundamental question about the perception of time is whether the neural mechanisms underlying temporal judgements are universal and centralized in the brain or modality specific and distributed []. Time perception has traditionally been thought to be entirely dissociated from spatial vision. Here we show that the apparent duration of a dynamic stimulus can be manipulated in a local region of visual space by adapting to oscillatory motion or flicker. This implicates spatially localized temporal mechanisms in duration perception. We do not see concomitant changes in the time of onset or offset of the test patterns, demonstrating a direct local effect on duration perception rather than an indirect effect on the time course of neural processing. The effects of adaptation on duration perception can also be dissociated from motion or flicker perception per se. Although 20 Hz adaptation reduces both the apparent temporal frequency and duration of a 10 Hz test stimulus, 5 Hz adaptation increases apparent temporal frequency but has little effect on duration perception. We conclude that there is a peripheral, spatially localized, essentially visual component involved in sensing the duration of visual events.
Resumo:
Ecological approaches to perception have demonstrated that information encoding by the visual system is informed by the natural environment, both in terms of simple image attributes like luminance and contrast, and more complex relationships corresponding to Gestalt principles of perceptual organization. Here, we ask if this optimization biases perception of visual inputs that are perceptually bistable. Using the binocular rivalry paradigm, we designed stimuli that varied in either their spatiotemporal amplitude spectra or their phase spectra. We found that noise stimuli with “natural” amplitude spectra (i.e., amplitude content proportional to 1/f, where f is spatial or temporal frequency) dominate over those with any other systematic spectral slope, along both spatial and temporal dimensions. This could not be explained by perceived contrast measurements, and occurred even though all stimuli had equal energy. Calculating the effective contrast following attenuation by a model contrast sensitivity function suggested that the strong contrast dependency of rivalry provides the mechanism by which binocular vision is optimized for viewing natural images. We also compared rivalry between natural and phase-scrambled images and found a strong preference for natural phase spectra that could not be accounted for by observer biases in a control task. We propose that this phase specificity relates to contour information, and arises either from the activity of V1 complex cells, or from later visual areas, consistent with recent neuroimaging and single-cell work. Our findings demonstrate that human vision integrates information across space, time, and phase to select the input most likely to hold behavioral relevance.
Resumo:
We sought to determine the extent to which red–green, colour–opponent mechanisms in the human visual system play a role in the perception of drifting luminance–modulated targets. Contrast sensitivity for the directional discrimination of drifting luminance–modulated (yellow–black) test sinusoids was measured following adaptation to isoluminant red–green sinusoids drifting in either the same or opposite direction. When the test and adapt stimuli drifted in the same direction, large sensitivity losses were evident at all test temporal frequencies employed (1–16 Hz). The magnitude of the loss was independent of temporal frequency. When adapt and test stimuli drifted in opposing directions, large sensitivity losses were evident at lower temporal frequencies (1–4 Hz) and declined with increasing temporal frequency. Control studies showed that this temporal–frequency–dependent effect could not reflect the activity of achromatic units. Our results provide evidence that chromatic mechanisms contribute to the perception of luminance–modulated motion targets drifting at speeds of up to at least 32°s-1. We argue that such mechanisms most probably lie within a parvocellular–dominated cortical visual pathway, sensitive to both chromatic and luminance modulation, but only weakly selective for the direction of stimulus motion.
Resumo:
Blurred edges appear sharper in motion than when they are stationary. We proposed a model of this motion sharpening that invokes a local, nonlinear contrast transducer function (Hammett et al, 1998 Vision Research 38 2099-2108). Response saturation in the transducer compresses or 'clips' the input spatial waveform, rendering the edges as sharper. To explain the increasing distortion of drifting edges at higher speeds, the degree of nonlinearity must increase with speed or temporal frequency. A dynamic contrast gain control before the transducer can account for both the speed dependence and approximate contrast invariance of motion sharpening (Hammett et al, 2003 Vision Research, in press). We show here that this model also predicts perceived sharpening of briefly flashed and flickering edges, and we show that the model can account fairly well for experimental data from all three modes of presentation (motion, flash, and flicker). At moderate durations and lower temporal frequencies the gain control attenuates the input signal, thus protecting it from later compression by the transducer. The gain control is somewhat sluggish, and so it suffers both a slow onset, and loss of power at high temporal frequencies. Consequently, brief presentations and high temporal frequencies of drift and flicker are less protected from distortion, and show greater perceptual sharpening.
Resumo:
The binding issue of th is thesis was the examination of workload, induced by relinotopic and spatiotopic stimuli, on both the ocu lomotor and cardiovascular systems together with investigating the covariation between the two systems - the 'eye-heart' link. Further, the influence of refractive error on ocular accommodation and cardiovascular function was assessed. A clinical evaluation was undertaken to assess the newly available open-view infrared Shin-Nippon NVision-K 5001 optometer, its benefit being the capability to measure through pupils = 2.3 mm. Measurements of refractive error taken with the NVision-K were found to be both accurate (Difference in Mean Spherical Equivalent: 0.14 ± 0.35 D; p = 0.67) and repeatable when compared to non-cycloplegic subjective refraction. Due to technical difficulties, however, the NVision-K could not be used for the purpose of the thesis, as such, measures of accommodation were taken using the continuously recording Shin-Nippon SRW-5000 openview infrared optometer, coupled with a piezo-electric finger pulse transducer to measure pulse. Heart rate variability (HRV) was spectrally analysed to determine the systemic sympathetic and parasympathetic components of the autonomic nervous system (ANS). A large sample (n = 60), cross-sectional study showed late-onset myopes (LOMs) display less accurate responses when compared to other refractive groups at high accommodative demand levels (3 .0 0 and 4.0D). Tonic accommodation (TA) was highest in the hypermetropes, fo llowed by emmetropes and early-onset myopes while the LOM subjects demonstrated statistically significant lower levels of TA. The root-meansquare (RMS) value of the accommodative response was shown to amplify with increased levels of accommodative demand. Changes in refractive error only became significant between groups at higher demand levels (3.0 D and 4.0 D) with the LOMs showing the largest magnification in oscilIations. Examination of the stimulus-response cross-over point with the unit ratio line and TA showed a correlation between the two (r = 0.45, p = 0.001), where TA is approximately twice the dioptric value of the stimulus-response cross-over point. Investigation of the relationship between ocular accommodation and systemic ANS function demonstrated covariation between the systems. Subjects with a faster heart rate (lower heart period) tended to have a higher TA value (r = -0.27, p < 0.05). Further, an increase in accommodative demand accompanies a faster heart rate. The influence of refractive error on the cardiovascular response to changes in accommodative demand, however, was equivocal. Examination of the microfluctuations ofacconunodation demonstrated a correlation between the temporal frequency location of the accommodative high Frequency component (HFC) and the arterial pulse frequency. The correlation was present at a range of accommodative demands from 0.0 D to 4.0 D and in all four refractive groups, suggesting that the HFC was augmented by physiological factors. Examination of the effect of visual cognition on ocular accommodation and the ANS confirmed that increasing levels of cognition affect the accommodative mechanism. The accommodative response shifted away from the subject at both near and far. This shift in accommodative response accompanied a decay in the systemic parasympathetic innervation to the heart. Differences between refractive groups also existed with LOMs showing less accurate responses compared to emmetropes. This disparity, however, appeared to be augmented by the systemic sympathetic nervous system. The investigations discussed explored Ihe role of oculomotor and cardiovascular fu nction in workload enviromnents, providing evidence for a behavioural link between the cardiovascular and oculomotor systems.
Resumo:
This thesis describes a series of experimental investigations into the functional organisation of human visual cortex using neuromagnetometry.This technique combines good spatial and temporal resolution enabling identification of the location and temporal response characteristics of cortical neurones within alert humans. To activate different neuronal populations and cortical areas a range of stimuli were used, the parameters of which were selected to match the known physiological properties of primate cortical neurones. In one series of experiments the evoked magnetic response was recorded to isoluminant red/green gratings. Co-registration of signal and magnetic resonance image data indicated a contribution to the response from visual areas V1, V2 and V4. To investigate the spatio-temporal characteristics of neurones within area V1 the evoked response was recorded for a range of stimulus spatial and temporal frequencies. The response to isoluminant red/green gratings was dominated by a major component which was found to have bandpass spatial frequency tuning with a peak at 1-2 cycles/degree, falling to the level of the noise at 6-8 cycles/degree. The temporal frequency tuning characteristics of the response showed bimodal sensitivity with peaks at 0-1Hz and 4Hz. In a further series of experiments the luminance evoked response was recorded to red/black, yellow/black and achromatic gratings and in all cases was found to be more complex than the isoluminant chromatic response, comprising up to three distinct components. The major response peak showed bandpass spatial frequency tuning characteristics, peaking at 6-8 cycles/degree, falling to the level of the noise at 12-16 cycles/degree. The results provide evidence to suggest that within area V1 the same neuronal population encodes both chromatic and luminance information and has spatial frequency tuning properties consistent with single-opponent cells. Furthermore, the results indicate that cells within area V1 encode chromatic motion information over a wide range of temporal frequencies with temporal response characteristics suggestive of the existence of a sub-population of cells sensitive to high temporal frequencies.
Resumo:
A Hamamatsu Video Area Analyser has been coupled with a modified Canon IR automatic optometer. This has allowed simultaneous recording of pupil diameter and accommodation response to be made both statically and continuously, a feature not common in previous studies. Experimental work concerned pupil and accommodation responses during near vision tasks under a variety of conditions. The effects of sustained near vision tasks on accommodation have usually been demonstrated by taking post-task measures under darkroom conditions. The possibility of similar effects on pupil diameter was assessed using static and continuous recordings following a near vision task. Results showed that is luminance levels remained unchanged by using a pre-and post-task bright-empty field then, although accommodation regressed to pre-task levels,pupil diameter remained for several minutes at the contstricted level induced by the task. An investigation into the effect of a sinusoidally-modulated blur-only accommodative stimulus on pupil response demonstrated that response may be reduced or absent despite robust accommodation responses. This suggests that blur-driven acommodation alone may not be sufficient to produce a pupil near response and that the presence of other cues may be necessary. Pupil response was investigated using a looming stimulus which produced an inferred-proximity cue. It was found that a pupil response could be induced which was in synchrony with the stimulus while closed-loop accommodation response was kept constant by the constraints of optical blur. The pupil diameter of young and elderly subjects undertaking a 5 minute reading task was measured to assess the contribution of pupil constriction to near vision function in terms of depth-of-focus. Results showed that in the young subjects pupil diameter was too large to have a significant effect on depth-of-focus although it may be increased in the elderly subjects. Pupil and accommodation reponses to a temporally-modulated stimulus containing all cues present in a normal visual environment was assessed and results showed that as stimulus temporal frequency increased, pupil response showed increasing phase lag relative to closed-loop accommodation. The results of this study suggest that it may be necessary to change the accepted view of the function of pupil response as part of the near vision triad and that further study would be of benefit in particular to designers of vision aids such as, for example, bifocal contact lenses.
Resumo:
This thesis is an exploration of the oscillatory changes occurring in the visual cortex as measured by a functional imaging technique known as Synthetic Aperture Magnetometry (SAM), and how these compare to the BOLD response, across a number of different experimental paradigms. In chapter one the anatomy and physiology of the visual pathways and cortex are outlined, introducing the reader to structures and terms used throughout the thesis whilst chapter two introduces both the technology and analysis techniques required to record MEG and fMRI and also outlines the theory behind SAM. In chapter three the temporal frequency tuning of both striate and extrastriate cortex is investigated, showing fundamental differences in both tuning characteristics and oscillatory power changes between the two areas. Chapter four introduces the concept of implied-motion and investigates the role of area V5 / MT in the perception of such stimuli and shows, for the first time, the temporal evolution of the response in this area. Similarly a close link is shown between the early evoked potential, produced by the stimulus, and previous BOLD responses. Chapter five investigates the modulation of cortical oscillations to both shifts in attention and varying stimulus contrast. It shows that there are both induced and evoked modulation changes with attention, consistent with areas previously known to show BOLD responses. Chapter six involves a direct comparison of cortical oscillatory changes with those of the BOLD response in relation to the parametric variation of a motion coherence stimulus. It is shown that various cortical areas show a linear BOLD response to motion coherence and, for the first time, that both induced oscillatory and evoked activity also vary linearly in areas coincidental with the BOLD response. The final chapter is a summary of the main conclusions and suggests further work.
Cross-orientation masking is speed invariant between ocular pathways but speed dependent within them
Resumo:
In human (D. H. Baker, T. S. Meese, & R. J. Summers, 2007b) and in cat (B. Li, M. R. Peterson, J. K. Thompson, T. Duong, & R. D. Freeman, 2005; F. Sengpiel & V. Vorobyov, 2005) there are at least two routes to cross-orientation suppression (XOS): a broadband, non-adaptable, monocular (within-eye) pathway and a more narrowband, adaptable interocular (between the eyes) pathway. We further characterized these two routes psychophysically by measuring the weight of suppression across spatio-temporal frequency for cross-oriented pairs of superimposed flickering Gabor patches. Masking functions were normalized to unmasked detection thresholds and fitted by a two-stage model of contrast gain control (T. S. Meese, M. A. Georgeson, & D. H. Baker, 2006) that was developed to accommodate XOS. The weight of monocular suppression was a power function of the scalar quantity ‘speed’ (temporal-frequency/spatial-frequency). This weight can be expressed as the ratio of non-oriented magno- and parvo-like mechanisms, permitting a fast-acting, early locus, as befits the urgency for action associated with high retinal speeds. In contrast, dichoptic-masking functions superimposed. Overall, this (i) provides further evidence for dissociation between the two forms of XOS in humans, and (ii) indicates that the monocular and interocular varieties of XOS are space/time scale-dependent and scale-invariant, respectively. This suggests an image-processing role for interocular XOS that is tailored to natural image statistics—very different from that of the scale-dependent (speed-dependent) monocular variety.
Resumo:
We present the essential features of the dissipative parametric instability, in the universal complex Ginzburg- Landau equation. Dissipative parametric instability is excited through a parametric modulation of frequency dependent losses in a zig-zag fashion in the spectral domain. Such damping is introduced respectively for spectral components in the +ΔF and in the -ΔF region in alternating fashion, where F can represent wavenumber or temporal frequency depending on the applications. Such a spectral modulation can destabilize the homogeneous stationary solution of the system leading to growth of spectral sidebands and to the consequent pattern formation: both stable and unstable patterns in one- and in two-dimensional systems can be excited. The dissipative parametric instability provides an useful and interesting tool for the control of pattern formation in nonlinear optical systems with potentially interesting applications in technological applications, like the design of mode- locked lasers emitting pulse trains with tunable repetition rate; but it could also find realizations in nanophotonics circuits or in dissipative polaritonic Bose-Einstein condensates.
Resumo:
This paper discusses some aspects of hunter-gatherer spatial organization in southern South Patagonia, in later times to 10,000 cal yr BP. Various methods of spatial analysis, elaborated with a Geographic Information System (GIS) were applied to the distributional pattern of archaeological sites with radiocarbon dates. The shift in the distributional pattern of chronological information was assessed in conjunction with other lines of evidence within a biogeographic framework. Accordingly, the varying degrees of occupation and integration of coastal and interior spaces in human spatial organization are explained in association with the adaptive strategies hunter-gatherers have used over time. Both are part of the same human response to changes in risk and uncertainty variability in the region in terms of resource availability and environmental dynamics.
Resumo:
We address the problem of estimating the fundamental frequency of voiced speech. We present a novel solution motivated by the importance of amplitude modulation in sound processing and speech perception. The new algorithm is based on a cumulative spectrum computed from the temporal envelope of various subbands. We provide theoretical analysis to derive the new pitch estimator based on the temporal envelope of the bandpass speech signal. We report extensive experimental performance for synthetic as well as natural vowels for both realworld noisy and noise-free data. Experimental results show that the new technique performs accurate pitch estimation and is robust to noise. We also show that the technique is superior to the autocorrelation technique for pitch estimation.
Resumo:
This article presents the investigation of frequency and temporal coherence properties of distributed Bragg reflector laser. In this scheme, a square-wavefrom voltage is applied to the phase section of the laser to little optical wavelength, and delayed optical heterodyne technique is used for the analysis of spectral characteristics. Experiments show that lightwaves emitted from the same active region asynchronously are partially frequency and temporal coherent. When the two wavelengths are closer, the two waves are strong v coherent, and the coherence properties get weak as the delay v time increases. (C) 2010 Wiley Periodicals, Inc. Microwave Opt Technol Left 52: 822-825, 2010 Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.25031
Resumo:
Phytoplankton observation is the product of a number of trade-offs related to sampling processes, required level of diversity and size spectrum analysis capabilities of the techniques involved. Instruments combining the morphological and high-frequency analysis for phytoplankton cells are now available. This paper presents an application of the automated high-resolution flow cytometer Cytosub as a tool for analysing phytoplanktonic cells in their natural environment. High resolution data from a temporal study in the Bay of Marseille (analysis every 30 min over 1 month) and a spatial study in the Southern Indian Ocean (analysis every 5 min at 10 knots over 5 days) are presented to illustrate the capabilities and limitations of the instrument. Automated high-frequency flow cytometry revealed the spatial and temporal variability of phytoplankton in the size range 1−∼50 μm that could not be resolved otherwise. Due to some limitations (instrumental memory, volume analysed per sample), recorded counts could be statistically too low. By combining high-frequency consecutive samples, it is possible to decrease the counting error, following Poisson’s law, and to retain the main features of phytoplankton variability. With this technique, the analysis of phytoplankton variability combines adequate sampling frequency and effective monitoring of community changes.