967 resultados para Taps and dies
Resumo:
Cemented carbide is today the most frequently used drawing die material in steel wire drawing applications. This is mainly due to the possibility to obtain a broad combination of hardness and toughness thus meeting the requirements concerning strength, crack resistance and wear resistance set by the wire drawing process. However, the increasing cost of cemented carbide in combination with the possibility to increase the wear resistance of steel through the deposition of wear resistant CVD and PVD coatings have enhanced the interest to replace cemented carbide drawing dies with CVD and PVD coated steel wire drawing dies. In the present study, the possibility to replace cemented carbide wire drawing dies with CVD and PVD coated steel drawing dies have been investigated by tribological characterisation, i.e. pin-on-disc and scratch testing, in combination with post-test observations of the tribo surfaces using scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D surface profilometry. Based on the results obtained, CVD and PVD coatings aimed to provide improved tribological performance of steel wire drawing dies should display a smooth surface topography, a high wear resistance, a high fracture toughness (i.e. a high cracking and chipping resistance) and intrinsic low friction properties in contact with the wire material. Also, the steel substrate used must display a sufficient load carrying capacity and resistance to thermal softening. Of the CVD and PVD coatings evaluated in the tribological tests, a CVD TiC and a PVD CrC/C coating displayed the most promising results.
Resumo:
STATEMENT OF PROBLEM: Despite careful procedures, master stone dies may be damaged during laboratory procedures. The dentist routinely adjusts castings because the marginal fit of casting is not as accurate as on the dies. PURPOSE: This study evaluated the technique of internal adjustment of castings with use of duplicated stone dies and a disclosing agent to improve marginal fit discrepancy. MATERIAL AND METHODS: Thirty-two nickel-chromium copings were fabricated and simulated standard clinical and laboratory procedures with 2 variables: tooth preparation convergence angles of 6 and 18 degrees, with or without internal relief. Master stone dies and their duplicates were selected for coping construction and internal adjustment, respectively. A specimen positioning device was coupled with a Toolmakers microscope to allow reproducibility of measurements. Each coping was evaluated at 8 locations of its marginal perimeter, before and after internal adjustment. RESULTS: Marginal fit discrepancy of copings were significantly reduced with an internal adjustment technique (mean > 52%) for all experimental groups. Tooth preparations with greater convergence and internally relieved castings recorded a better marginal fit. CONCLUSION: The casting internal adjustment technique with use of duplicated stone dies and a disclosing agent substantially reduced marginal fit discrepancy.
Resumo:
Mode of access: Internet.
Resumo:
"Reprinted verbatim from the Tool engineers handbook, an official publication of the American Society of Tool Engineers."
Resumo:
Translation of Combattimento spirituale.
Resumo:
Includes bibliographies.
Resumo:
This paper presents the details of a parametric study based on finite element analyses (FEA) and development of design rules for the shear strength of a recently developed, cold-formed steel channel beam known as LiteSteel Beam (LSB). The LSB sections are commonly used as flexural members in residential, in-dustrial and commercial buildings. In order to ensure safe and efficient designs of LSBs, many research stu-dies have been undertaken on the flexural behaviour of LSBs. However, no research has been undertaken on the shear behaviour of LSBs. Therefore a detailed investigation including both numerical and experimental studies was undertaken to investigate the shear behaviour of LSBs. Both the experimental and FEA parametric study results showed that the current design rules in cold-formed steel design codes are very conservative for the shear design of LSBs. New shear strength equations for LSBs were proposed based on the experimental and FEA parametric study results.
Resumo:
Increasing resistance of rabbits to myxomatosis in Australia has led to the exploration of Rabbit Haemorrhagic Disease, also called Rabbit Calicivirus Disease (RCD) as a possible control agent. While the initial spread of RCD in Australia resulted in widespread rabbit mortality in affected areas, the possible population dynamic effects of RCD and myxomatosis operating within the same system have not been properly explored. Here we present early mathematical modelling examining the interaction between the two diseases. In this study we use a deterministic compartment model, based on the classical SIR model in infectious disease modelling. We consider, here, only a single strain of myxomatosis and RCD and neglect latent periods. We also include logistic population growth, with the inclusion of seasonal birth rates. We assume there is no cross-immunity due to either disease. The mathematical model allows for the possibility of both diseases to be simultaneously present in an individual, although results are also presented for the case where co infection is not possible, since co-infection is thought to be rare and questions exist as to whether it can occur. The simulation results of this investigation show that it is a crucial issue and should be part of future field studies. A single simultaneous outbreak of RCD and myxomatosis was simulated, while ignoring natural births and deaths, appropriate for a short timescale of 20 days. Simultaneous outbreaks may be more common in Queensland. For the case where co-infection is not possible we find that the simultaneous presence of myxomatosis in the population suppresses the prevalence of RCD, compared to an outbreak of RCD with no outbreak of myxomatosis, and thus leads to a less effective control of the population. The reason for this is that infection with myxomatosis removes potentially susceptible rabbits from the possibility of infection with RCD (like a vaccination effect). We found that the reduction in the maximum prevalence of RCD was approximately 30% for an initial prevalence of 20% of myxomatosis, for the case where there was no simultaneous outbreak of myxomatosis, but the peak prevalence was only 15% when there was a simultaneous outbreak of myxomatosis. However, this maximum reduction will depend on other parameter values chosen. When co-infection is allowed then this suppression effect does occur but to a lesser degree. This is because the rabbits infected with both diseases reduces the prevalence of myxomatosis. We also simulated multiple outbreaks over a longer timescale of 10 years, including natural population growth rates, with seasonal birth rates and density dependent(logistic) death rates. This shows how both diseases interact with each other and with population growth. Here we obtain sustained outbreaks occurring approximately every two years for the case of a simultaneous outbreak of both diseases but without simultaneous co-infection, with the prevalence varying from 0.1 to 0.5. Without myxomatosis present then the simulation predicts RCD dies out quickly without further introduction from elsewhere. With the possibility of simultaneous co-infection of rabbits, sustained outbreaks are possible but then the outbreaks are less severe and more frequent (approximately yearly). While further model development is needed, our work to date suggests that: 1) the diseases are likely to interact via their impacts on rabbit abundance levels, and 2) introduction of RCD can suppress myxomatosis prevalence. We recommend that further modelling in conjunction with field studies be carried out to further investigate how these two diseases interact in the population.
Resumo:
Technology has advanced in such a manner that the world can now communicate in means previously never thought possible. These new technologies have not been overlooked by transnational organized crime groups and networks of corruption, and have been exploited for criminal success. This text explores the use of communication interception technology (CIT), such as phone taps or email interception, and its potential to cause serious disruption to these criminal enterprises. Exploring the placement of communication interception technology within differing policing frameworks, and how they integrate in a practical manner, the authors demonstrate that CIT is best placed within a proactive, intelligence-led policing framework. They also indicate that if law enforcement agencies in Western countries are serious about fighting transnational organized crime and combating corruption, there is a need to re-evaluate the constraints of interception technology, and the sceptical culture that surrounds intelligence in policing. Policing Transnational Organized Crime and Corruption will appeal to scholars of Law, Criminal Justice and Police Science as well as intelligence analysts and police and security intelligence professionals.
Resumo:
In recent times, technology has advanced in such a manner that the world can now communicate in means previously never thought possible. Transnational organised crime groups, who have exploited these new technologies as basis for their criminal success, however, have not overlooked this development, growth and globalisation. Law enforcement agencies have been confronted with an unremitting challenge as they endeavour to intercept, monitor and analyse these communications as a means of disrupting the activities of criminal enterprises. The challenge lies in the ability to recognise and change tactics to match an increasingly sophisticated adversary. The use of communication interception technology, such as phone taps or email interception, is a tactic that when used appropriately has the potential to cause serious disruption to criminal enterprises. Despite the research that exists on CIT and TOC, these two bodies of knowledge rarely intersect. This paper builds on current literature, drawing them together to provide a clearer picture of the use of CIT in an enforcement and intelligence capacity. It provides a review of the literature pertaining to TOC, the structure of criminal enterprises and the vulnerability of communication used by these crime groups. Identifying the current contemporary models of policing it reviews intelligence-led policing as the emerging framework for modern policing. Finally, it assesses the literature concerning CIT, its uses within Australia and the limitations and arguments that exist. In doing so, this paper provides practitioners with a clearer picture of the use, barriers and benefits of using CIT in the fight against TOC. It helps to bridge the current gaps in modern policing theory and offers a perspective that can help drive future research.
Resumo:
A hot billet in contact with relatively cold dies undergoes rapid cooling in the forging operation. This may give rise to unfilled cavities, poor surface finish and stalling of the press. A knowledge of billet-die temperatures as a function of time is therefore essential for process design. A computer code using finite difference method is written to estimate such temperature histories and validated by comparing the predicted cooling of an integral die-billet configuration with that obtained experimentally.
Resumo:
Regular electrical activation waves in cardiac tissue lead to the rhythmic contraction and expansion of the heart that ensures blood supply to the whole body. Irregularities in the propagation of these activation waves can result in cardiac arrhythmias, like ventricular tachycardia (VT) and ventricular fibrillation (VF), which are major causes of death in the industrialised world. Indeed there is growing consensus that spiral or scroll waves of electrical activation in cardiac tissue are associated with VT, whereas, when these waves break to yield spiral- or scroll-wave turbulence, VT develops into life-threatening VF: in the absence of medical intervention, this makes the heart incapable of pumping blood and a patient dies in roughly two-and-a-half minutes after the initiation of VF. Thus studies of spiral- and scroll-wave dynamics in cardiac tissue pose important challenges for in vivo and in vitro experimental studies and for in silico numerical studies of mathematical models for cardiac tissue. A major goal here is to develop low-amplitude defibrillation schemes for the elimination of VT and VF, especially in the presence of inhomogeneities that occur commonly in cardiac tissue. We present a detailed and systematic study of spiral- and scroll-wave turbulence and spatiotemporal chaos in four mathematical models for cardiac tissue, namely, the Panfilov, Luo-Rudy phase 1 (LRI), reduced Priebe-Beuckelmann (RPB) models, and the model of ten Tusscher, Noble, Noble, and Panfilov (TNNP). In particular, we use extensive numerical simulations to elucidate the interaction of spiral and scroll waves in these models with conduction and ionic inhomogeneities; we also examine the suppression of spiral- and scroll-wave turbulence by low-amplitude control pulses. Our central qualitative result is that, in all these models, the dynamics of such spiral waves depends very sensitively on such inhomogeneities. We also study two types of control chemes that have been suggested for the control of spiral turbulence, via low amplitude current pulses, in such mathematical models for cardiac tissue; our investigations here are designed to examine the efficacy of such control schemes in the presence of inhomogeneities. We find that a local pulsing scheme does not suppress spiral turbulence in the presence of inhomogeneities; but a scheme that uses control pulses on a spatially extended mesh is more successful in the elimination of spiral turbulence. We discuss the theoretical and experimental implications of our study that have a direct bearing on defibrillation, the control of life-threatening cardiac arrhythmias such as ventricular fibrillation.