998 resultados para Tantalum oxide


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Near-infrared broadband emission from bismuth-tantalum-codoped germanium oxide glasses was observed at room temperature when the glasses were pumped by an 808 nm laser diode. The emission band covered the 0, E, S, C, and L bands (1260-1625 nm), with a maximum peak at similar to 1310 nm, a FWHM broader than 400 nm, and a lifetime longer than 200 lis. The observed broadband luminescence was attributed to bismuth clusters in the glasses. Bismuth-tantalum-codoped germanium oxide glass might be promising as amplification media for broadly tunable lasers and wideband amplifiers in optical communications. (c) 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of this work is to present and to interpret the change of structure and physical properties of tantalum oxynitride (TaNxOy) thin films, produced by dc reactive magnetron sputtering, by varying the processing parameters. A set of TaNxOy films was prepared by varying the reactive gases flow rate, using a N2/O2 gas mixture with a concentration ratio of 17:3. The different films, obtained by this process, exhibited significant differences. The obtained composition and the interpretation of X-ray diffraction results, shows that, depending on the partial pressure of the reactive gases, the films are: essentially dark grey metallic, when the atomic ratio (N + O)/Ta < 0.1, evidencing a tetragonal β-Ta structure; grey-brownish, when 0.1 < (N + O)/Ta < 1, exhibiting a face-centred cubic (fcc) TaN-like structure; and transparent oxide-type, when (N + O)/Ta > 1, evidencing the existence of Ta2O5, but with an amorphous structure. These transparent films exhibit refractive indexes, in the visible region, always higher than 2.0. The wear resistance of the films is relatively good. The best behaviour was obtained for the films with (N + O)/Ta ≈ 0.5 and (N + O)/Ta ≈ 1.3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intent of this study was the development of new ceramic SOFC anode materials which possess electrical conductivity as well as redox stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CRP-2/2A core, drilled in western McMurdo Sound in October and November 1998, penetrated 624 m of Quaternary. Pliocene, lower Miocene, and Oligocene glacigenic sediments. The palaeoclimatic record of CRP-2/2A is examined using major element analyses of bulk core samples of fine grained sediments (mudstones and siltstones) and the Chemical Index of Alteration (CIA) of Nesbitt & Young (1982). The CIA is calculated from the relative abundances of AI, K, Ca, and Na oxides, and its magnitude increases as the effects of chemical weathering increase. However, changes in sediment provenance can also affect the CIA, and provenance changes are recorded by shifts in the Al2O3/TiO2 ratios and the Nb contents of these CRP-2/2A mudstones. Relatively low CIA values (40-50) occur throughout the CRP-2/2A sequence, whereas the Al2O3/TiO2 ratio decreases upsection. The major provenance change is an abrupt onset of McMurdo Volcanic Group detritus at ~300 mbsf and is best characterized by a rapid increase in Nb content in the sediments. This provenance shift is not evident in the CIA record, suggesting that a contribution from the Ferrar Dolerite to the older sediments was replaced by an input of McMurdo Volcanic Group material in the younger sediments. If this is true, then the relatively uniform CIA values indicate relatively consistent palaeoweathering intensities throughout the Oligocene and early Miocene in the areas that supplied sediment to CRP-2/2A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal evolution process of RuO2–Ta2O5/Ti coatings with varying noble metal content has been investigated under in situ conditions by thermogravimetry combined with mass spectrometry. The gel-like films prepared from alcoholic solutions of the precursor salts (RuCl3·3H2O, TaCl5) onto titanium metal support were heated in an atmosphere containing 20% O2 and 80% Ar up to 600 °C. The evolution of the mixed oxide coatings was followed by the mass spectrometric ion intensity curves. The cracking of retained solvent and the combustion of organic surface species formed were also followed by the mass spectrometric curves. The formation of carbonyl- and carboxylate-type surface species connected to the noble metal was identified by Fourier transform infrared emission spectroscopy. These secondary processes–catalyzed by the noble metal–may play an important role in the development of surface morphology and electrochemical properties. The evolution of the two oxide phases does not take place independently, and the effect of the noble metal as a combustion catalyst was proved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared spectroscopy has been used to study nano to micro sized gallium oxyhydroxide α-GaO(OH), prepared using a low temperature hydrothermal route. Rod-like α-GaO(OH) crystals with average length of ~2.5 μm and width of 1.5 μm were prepared when the initial molar ratio of Ga to OH was 1:3. β-Ga2O3 nano and micro-rods were prepared through the calcination of α-GaO(OH) The initial morphology of α-GaO(OH) is retained in the β-Ga2O3 nanorods. The combination of infrared and infrared emission spectroscopy complimented with dynamic thermal analysis were used to characterise the α-GaO(OH) nanotubes and the formation of β-Ga2O3 nanorods. Bands at around 2903 and 2836 cm-1 are assigned to the -OH stretching vibration of α-GaO(OH) nanorods. Infrared bands at around 952 and 1026 cm-1 are assigned to the Ga-OH deformation modes of α-GaO(OH). A significant number of bands are observed in the 620 to 725 cm-1 region and are assigned to GaO stretching vibrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In conventional fabrication of ceramic separation membranes, the particulate sols are applied onto porous supports. Major structural deficiencies under this approach are pin-holes and cracks, and the dramatic losses of flux when pore sizes are reduced to enhance selectivity. We have overcome these structural deficiencies by constructing hierarchically structured separation layer on a porous substrate using lager titanate nanofibers and smaller boehmite nanofibers. This yields a radical change in membrane texture. The resulting membranes effectively filter out species larger than 60 nm at flow rates orders of magnitude greater than conventional membranes. This reveals a new direction in membrane fabrication.