993 resultados para TRIBOLOGICAL PROPERTIES


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The tribological properties of the high-strength and high-modulus ultrahigh molecular weight polyethylene (UHMWPE) film and the UHMWPE composites reinforced by multiwalled carbon nanotubes (MWCNT/UHMWPE) were investigated using a nanoindenter and atomic force microscope (AFM). The MWCNT/UHMWPE composites films exhibited not only high wear resistance but also a low friction coefficient compared to the pure UHMWPE films. We attribute the high wear resistance to the formation of the new microstructure in the composites due to the addition of MWCNTs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present thesis focuses on characterisation of microstructure and the resulting mechanical and tribological properties of CVD and PVD coatings used in metal cutting applications. These thin and hard coatings are designed to improve the tribological performance of cutting tools which in metal cutting operations may result in improved cutting performance, lower energy consumption, lower production costs and lower impact on the environment.  In order to increase the understanding of the tribological behaviour of the coating systems a number of friction and wear tests have been performed and evaluated by post-test microscopy and surface analysis. Much of the work has focused on coating cohesive and adhesive strength, surface fatigue resistance, abrasive wear resistance and friction and wear behaviour under sliding contact and metal cutting conditions. The results show that the CVD deposition of accurate crystallographic phases, e.g. α-Al2O3 rather than κ-Al2O3, textures and multilayer structures can increase the wear resistance of Al2O3. However, the characteristics of the interfaces, e.g. topography as well as interfacial porosity, have a strong impact on coating adhesion and consequently on the resulting properties.  Through the deposition of well designed bonding and template layer structures the above problems may be eliminated. Also, the presence of macro-particles in PVD coatings may have a significant impact on the interfacial adhesive strength, increasing the tendency to coating spalling and lowering the surface fatigue resistance, as well as increasing the friction in sliding contacts. Finally, the CVD-Al2O3 coating topography influences the contact conditions in sliding as well as in metal cutting. In summary, the work illuminates the importance of understanding the relationships between deposition process parameters, composition and microstructure, resulting properties and tribological performance of CVD and PVD coatings and how this knowledge can be used to develop the coating materials of tomorrow.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report on the synthesis, characterisation, and physical and tribological properties of halogen-free ionic liquids based on various chelated orthoborate anions with different phosphonium cations, both without halogen atoms in their structure. Important physical properties of the ILs including glass transition temperatures, density, viscosity and ionic conductivity were measured and are reported here. All of these new halogen-free orthoborate ionic liquids (hf-BILs) are hydrophobic and hydrolytically stable liquids at room temperature. As lubricants, these hf-BILs exhibit considerably better antiwear and friction reducing properties under boundary lubrication conditions for steel–aluminium contacts as compared with fully formulated (15W-50 grade) engine oil. Being halogen free these hf-BILs offer a more environmentally benign alternative to ILs being currently developed for lubricant applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fluidized bed reactor chemical vapor deposition (FBR-CVD) has been used to enrich the surface of oxygen free high conductivity (OFHC) copper with titanium, silicon and aluminum. This technique enables the production of coherent and adherent intermetallic surface layers of uniform thickness and high hardness. The characterization of the coatings was performed using backscatter scanning electron microscopy (BS-SEM), X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES) and micro-hardness. The tribological properties of the coatings in dry sliding contact with steel were evaluated by pin-on-disc wear testing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Titanium and its alloys are excellent candidates for biomedical implant. However, they exhibit relatively poor tribological properties. In this study, a two-step treatment including surface mechanical attrition treatment (SMAT) combined with thermal oxidation process has been developed to improve the tribological properties and biocompatibility of Ti. Ti after two-step treatment shows excellent wear-resistance and biocompatibility among all Ti samples, which can be ascribed to the highest surface energy, well crystallinity of rutile layer on its surface. Overall, the two-step treatment is a prospective method to produce excellent biomedical Ti materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the work was to explore the practical applicability of molecular dynamics at different length and time scales. From nanoparticles system over colloids and polymers to biological systems like membranes and finally living cells, a broad range of materials was considered from a theoretical standpoint. In this dissertation five chemistry-related problem are addressed by means of theoretical and computational methods. The main results can be outlined as follows. (1) A systematic study of the effect of the concentration, chain length, and charge of surfactants on fullerene aggregation is presented. The long-discussed problem of the location of C60 in micelles was addressed and fullerenes were found in the hydrophobic region of the micelles. (2) The interactions between graphene sheet of increasing size and phospholipid membrane are quantitatively investigated. (3) A model was proposed to study structure, stability, and dynamics of MoS2, a material well-known for its tribological properties. The telescopic movement of nested nanotubes and the sliding of MoS2 layers is simulated. (4) A mathematical model to gain understaning of the coupled diffusion-swelling process in poly(lactic-co-glycolic acid), PLGA, was proposed. (5) A soft matter cell model is developed to explore the interaction of living cell with artificial surfaces. The effect of the surface properties on the adhesion dynamics of cells are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Novel carbon fiber (CF)-reinforced poly(phenylene sulphide) (PPS) laminates incorporating inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles were prepared via melt-blending and hot-press processing. The influence of the IF-WS2 on the morphology, thermal, mechanical and tribological properties of PPS/CF composites was investigated. Efficient nanoparticle dispersion within the matrix was attained without using surfactants. A progressive rise in thermal stability was found with increasing IF-WS2 loading, as revealed by thermogravimetric analysis. The addition of low nanoparticle contents retarded the crystallization of the matrix, whereas concentrations equal or higher than 1.0 wt% increased both the crystallization temperature and degree of crystallinity compared to those of PPS/CF. Mechanical tests indicated that with only 1.0 wt% IF-WS2 the flexural modulus and strength of PPS/CF improved by 17 and 14%, respectively, without loss in toughness, ascribed to a synergistic effect between the two fillers. A significant enhancement in the storage modulus and glass transition temperature was also observed. Moreover, the wear rate and coefficient of friction strongly decreased, attributed to the lubricant role of the IF-WS2 combined with their reinforcing effect. These inorganic nanoparticles show great potential to improve the mechanical and tribological properties of conventional thermoplastic/CF composites for structural applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to study the sliding and the vibrating fretting tests mechanism of h-BN micro-particles when used as a lubricating grease-2 additive. Design/methodology/approach: The fretting tests were conducted on steel/steel contacts using both vibrating fretting apparatus and the shaftsleeve slide fitted tester. The wear scars were characterized with profilometry. The tribological properties of grease-2 compounded with h-BN additive were also compared to those obtained for the commercial product Militec-4. Findings: The experiment showed significant differences between the results obtained from the vibrating fretting and the shaft-sleeve sliding fitted tests. Adding h-BN to the lubricant leads to a better performance in the shaft-sleeve slide regime than in the steel/steel vibrating test condition. Originality/value: The results of the experimental studies demonstrate the potential of h-BN as an additive for preventing fretting sliding, and can very useful for further application of compound grease-2 with h-BN additive in industrial equipment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The multilamellar structure of phospholipids, i.e. the surface amorphous layer (SAL) that covers the natural surface of articular cartilage, and hexagonal boron nitride (h-BN) on the surface of metal porous bearings are two prominent examples of the family of layered materials that possess the ability to deliver lamellar lubrication. This chapter presents the friction study that was conducted on the surfaces of cartilage and the metal porous bearing impregnated with oil (first generation) and with oil + h-BN (second generation). The porosity of cartilage is around 75% and those of metal porous bearings were 15–28 wt%. It is concluded that porosity is a critical factor in facilitating the excellent tribological properties of both articular cartilage and the porous metal bearings studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some tribological properties of a mica-dispersed Al-4%Cu-1.5%Mg alloy cast by a conventional foundry technique are reported. The effect of mica dispersion on the wear rate and journal bearing performance of the matrix alloy was studied under different pressures and under different interface friction conditions. The dispersion of mica was found (a) to increase the wear rate of the base alloy, (b) to decrease the temperature rise during wear and (c) to improve the ability of the alloy to resist seizure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Al2O3-SiC-(Al,Si) cermets are fabricated using the melt oxidation route. The tribological properties of the composites are tested under adhesive sliding and two body abrasion conditions. Under adhesive conditions, the network of residual aluminium in the matrix plays a role in the formation of a thin tribofilm on the interface while in abrasion the hardness of the composite plays a prominent tribological role. The work suggests that microstructural control can make this low temperature composite competitive with the conventional high temperature monolithic ceramics. (C) 1999 Published by Elsevier Science S.A. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ethylene gas is burnt and the soot generated is sampled thermophoretically at different heights along the flame axis starting from a region close to the root of the flame. The morphology and crystallinity of the particle are recorded using high resolution transmission electron microscopes. The hardness of a single particle is measured using a nanoindenter. The frictional resistance and material removal of a particle are measured using an atomic force microscope. The particles present in the mid-flame region are found to have a crystalline shell. The ones at the flame root are found to be highly disordered and the ones at the flame tip and above have randomly distributed pockets of short range order. The physical state of a particle is found to relate, but not very strongly, with the mechanical and tribological properties of the particles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Damaged articulating joints can be repaired or replaced with synthetic biomaterials, which can release wear debris due to articulation, leading to the osteolysis. In a recent work, it has been shown that it is possible to achieve a better combination of flexural strength/fracture toughness as well as in vitro bioactivity and cytocompatibility properties in spark plasma sintered hydroxyapatite-titanium (HA-Ti) composites. Although hydroxyapatite and titanium are well documented for their good biocompatibility, nanosized hydroxyapatite (HA) and titanium (Ti) particles can cause severe toxicity to cells. In order to address this issue, fretting wear study of HA-Ti composites under dry and wet (1x SBF, supplemented with 5 g l(-1) bovine serum albumin (BSA)) condition was performed to assess the wear resistance as well as wear debris formation, in vitro. The experimental results reveal one order of magnitude lower wear rate for HA-10 wt% Ti (7.5 x 10(-5) mm(3) N-1 m(-1)) composite than monolithic HA (3.9 x 10(-4) mm(3) N-1 m(-1)) in simulated body fluid. The difference in the tribological properties has been analyzed in the light of phase assemblages and mechanical properties. Overall, the results suggest the potential use of HA-Ti composites over existing HA-based biocomposites in orthopedic as well as dental applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In developing materials with better tribological properties, it is always conceived that the addition of softer phase would result in better frictional behavior. In order to address this issue, we report here the results of fretting wear study on Cu-10 wt% TiB2 and Cu-10 wt% TiB2-10 wt% Pb composites, sintered using spark plasma sintering (SPS) technique. It was found out that the addition of softer phase i.e. 10 wt % Pb to Cu-10 wt% TiB2 composites has not resulted in the lowering of the coefficient of friction (COF). The combination of steady state COF (0.6) and wear rate (10(-3) mm(3)/N-m) was measured and such properties are even better than that obtained with TiB2 coatings reported in the literature. For Cu-10 wt% TiB2 sintered at different temperature, a lower wear resistance with increase in hardness is being measured. An attempt has been made to correlate the observed wear behavior with the surface and subsurface deformation. The formation of a wear-resistant delaminated tribolayer consisting of TiB2 particles and ultrafine oxide debris (Cu, Fe, Ti)(x)O-y was the reason assigned for the observed low wear rate of these composites. (C) 2013 Elsevier B.V. All rights reserved.