911 resultados para TOF-SIMS
Resumo:
Brazil is one the largest producers and exporters of food commodities in the world. The evaluation of fungi capable of spoilage and the production mycotoxins in these commodities is an important issue that can be of help in bioeconomic development. The present work aimed to identify fungi of the genus Aspergillus section Flavi isolated from different food commodities in Brazil. Thirty-five fungal isolates belonging to the section Flavi were identified and characterised. Different classic phenotypic and genotypic methodologies were used, as well as a novel approach based on proteomic profiles produced by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Type or reference strains for each taxonomic group were included in this study. Three isolates that presented discordant identification patterns were further analysed using the internal transcribed spacer (ITS) region and calmodulin gene sequences. The data obtained from the phenotypic and spectral analyses divide the isolates into three groups, corresponding to taxa closely related to Aspergillus flavus, Aspergillus parasiticus, and Aspergillus tamarii. Final polyphasic fungal identification was achieved by joining data from molecular analyses, classical morphology, and biochemical and proteomic profiles generated by MALDI-TOF MS.
Resumo:
Fusarium verticillioides is considered one of the most important global sources of fumonisin contamination in food and feed. Corn is one of the main commodities produced in the Northeastern Region of Brazil. The present study investigated potential mycotoxigenic fungal strains belonging to the F. verticillioides species isolated from corn kernels in 3 different Regions of the Brazilian State of Pernambuco. A polyphasic approach including classical taxonomy, molecular biology, MALDI-TOF MS and MALDI-TOF MS/MS for the identification and characterisation of the F. verticillioides strains was used. Sixty F. verticillioides strains were isolated and successfully identified by classical morphology, proteomic profiles of MALDI-TOF MS, and by molecular biology using the species-specific primers VERT-1 and VERT-2. FUM1 gene was further detected for all the 60 F. verticillioides by using the primers VERTF-1 and VERTF-2 and through the amplification profiles of the ISSR regions using the primers (GTG)5 and (GACA)4. Results obtained from molecular analysis shown a low genetic variability among these isolates from the different geographical regions. All of the 60 F. verticillioides isolates assessed by MALDI-TOF MS/MS presented ion peaks with the molecular mass of the fumonisin B1 (721.83 g/mol) and B2 (705.83 g/mol)
Resumo:
PURPOSE: To identify cancer-linked genes, Sjöblom et al. and Wood et al. performed a genome-wide mutation screening in human breast and colorectal cancers. 140 CAN-genes were found in breast cancer, which in turn contained overall 334 mutations. These mutations could prove useful for diagnostic and therapeutic purposes. METHODS: We used a MALDI-TOF MS 40-plex assay for testing 40 loci within 21 high-ranking breast cancer CAN-genes. To confirm mutations, we performed single-plex assays and sequencing. RESULTS: In general, the mutation rate of the analyzed loci in our sample cohort was very low. No mutation from the 40 loci analyzed could be found in the 6 cell lines. In tissue samples, a single breast cancer tissue sample showed heterozygosity at locus c.5834G>A within the ZFYVE26 gene (Zinc finger FYVE domain-containing gene 26). CONCLUSIONS: Sjöblom et al./Wood et al. already showed that the vast majority of CAN-genes are mutated at very low frequency. Due to the fact that we only found one mutation in our cohort, we therefore assume that at the selected loci, mutations might be low-frequency events and therefore, more rarely detectable. However, further evaluation of the CAN-gene mutations in larger cohorts should be the aim of further studies.
Resumo:
MALDI-TOF mass spectrometry is a diagnostic tool of microbial identification and characterization based on the detection of the mass of molecules. In the majority of clinical laboratories, this technology is currently being used mainly for bacterial diagnosis, but several approaches in the field of virology have been investigated. The introduction of this technology in clinical virology will improve the diagnosis of infections produced by viruses but also the discovery of mutations and variants of these microorganisms as well as the detection of antiviral resistance. This review is focused on the main current applications of MALDI-TOF MS techniques in clinical virology showing the state of the art with respect to this exciting new technology.
Resumo:
Lactococcus garvieae is a Gram-positive, catalase negative coccus arranged in pairs or short chains, well-known as a fish pathogen. We report a case of Infective Endocarditis (IE) by L. garvieae in a native valve from a 68-year-old male with unknown history of contact with raw fish and an extensive history of heart disease. This case highlights the reliability of MALDI-TOF MS compared to conventional methods in the identification of rare microorganisms like this.
Resumo:
Référence bibliographique : Rol, 57728
Resumo:
Purpose: To evaluate the suitability of an improved version of an automatic segmentation method based on geodesic active regions (GAR) for segmenting cerebral vasculature with aneurysms from 3D X-ray reconstruc-tion angiography (3DRA) and time of °ight magnetic resonance angiography (TOF-MRA) images available in the clinical routine.Methods: Three aspects of the GAR method have been improved: execution time, robustness to variability in imaging protocols and robustness to variability in image spatial resolutions. The improved GAR was retrospectively evaluated on images from patients containing intracranial aneurysms in the area of the Circle of Willis and imaged with two modalities: 3DRA and TOF-MRA. Images were obtained from two clinical centers, each using di®erent imaging equipment. Evaluation included qualitative and quantitative analyses ofthe segmentation results on 20 images from 10 patients. The gold standard was built from 660 cross-sections (33 per image) of vessels and aneurysms, manually measured by interventional neuroradiologists. GAR has also been compared to an interactive segmentation method: iso-intensity surface extraction (ISE). In addition, since patients had been imaged with the two modalities, we performed an inter-modality agreement analysis with respect to both the manual measurements and each of the two segmentation methods. Results: Both GAR and ISE di®ered from the gold standard within acceptable limits compared to the imaging resolution. GAR (ISE, respectively) had an average accuracy of 0.20 (0.24) mm for 3DRA and 0.27 (0.30) mm for TOF-MRA, and had a repeatability of 0.05 (0.20) mm. Compared to ISE, GAR had a lower qualitative error in the vessel region and a lower quantitative error in the aneurysm region. The repeatabilityof GAR was superior to manual measurements and ISE. The inter-modality agreement was similar between GAR and the manual measurements. Conclusions: The improved GAR method outperformed ISE qualitatively as well as quantitatively and is suitable for segmenting 3DRA and TOF-MRA images from clinical routine.
Resumo:
To explore the discriminatory power of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for detecting subtle differences in isogenic isolates, we tested isogenic strains of Staphylococcus aureus differing in their expression of resistance to methicillin or teicoplanin. More important changes in MALDI-TOF MS spectra were found with strains differing in methicillin than in teicoplanin resistance. In comparison, very minor or no changes were recorded in pulsed-field gel electrophoresis profiles or peptidoglycan muropeptide digest patterns of these strains, respectively. MALDI-TOF MS might be useful to detect subtle strain-specific differences in ionizable components released from bacterial surfaces and not from their peptidoglycan network.
Resumo:
MALDI-TOF MS can be used for the identification of microorganism species. We have extended its application to a novel assay of Candida albicans susceptibility to fluconazole, based on monitoring modifications of the proteome of yeast cells grown in the presence of varying drug concentrations. The method was accurate, and reliable, and showed full agreement with the Clinical Laboratory Standards Institute's reference method. This proof-of-concept demonstration highlights the potential for this approach to test other pathogens.
Resumo:
BACKGROUND: Cytomegalovirus (CMV) infection is associated with significant morbidity and mortality in transplant recipients. Resistance against ganciclovir is increasingly observed. According to current guidelines, direct drug resistance testing is not always performed due to high costs and work effort, even when resistance is suspected. OBJECTIVES: To develop a more sensitive, easy applicable and cost-effective assay as proof of concept for direct drug resistance testing in CMV surveillance of post-transplant patients. STUDY DESIGN: Five consecutive plasma samples from a heart transplant patient with a primary CMV infection were analyzed by quantitative real-time polymerase chain reaction (rtPCR) as a surrogate marker for therapy failure, and by direct drug resistance detection assays such as Sanger sequencing and the novel primer extension (PEX) reaction matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) based method. RESULTS: This report demonstrates that PEX reaction followed by MALDI-TOF analysis detects the A594V mutation, encoding ganciclovir resistance, ten days earlier compared to Sanger sequencing and more than 30 days prior to an increase in viral load. CONCLUSION: The greatly increased sensitivity and rapid turnaround-time combined with easy handling and moderate costs indicate that this procedure could make a major contribution to improve transplantation outcomes.