45 resultados para TNFR1


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endothelin mediates neutrophil recruitment during innate inflammation. Herein we address whether endothelin-1 (ET-1) is involved in neutrophil recruitment in adaptive inflammation in mice, and its mechanisms. Pharmacological treatments were used to determine the role of endothelin in neutrophil recruitment to the peritoneal cavity of mice challenged with antigen (ovalbumin) or ET-1. Levels of ET-1, tumour necrosis factor a (TNF alpha), and CXC chemokine ligand 1 (CXCL1) were determined by enzyme-linked immunosorbent assay. Neutrophil migration and flow cytometry analyses were performed 4 h after the intraperitoneal stimulus. ET-1 induced dose-dependent neutrophil recruitment to the peritoneal cavity. Treatment with the non-selective ETA/ETB receptor antagonist bosentan, and selective ETA or ETB receptor antagonists BQ-123 or BQ-788, respectively, inhibited ET-1- and ovalbumin-induced neutrophil migration to the peritoneal cavity. In agreement with the above, the antigen challenge significantly increased levels of ET-1 in peritoneal exudates. The ET-1- and ovalbumin-induced neutrophil recruitment were reduced in TNFR1 deficient mice, and by treatments targeting CXCL1 or CXC chemokine receptor 2 (CXCR2); further, treatment with bosentan, BQ-123, or BQ-788 inhibited ET-1- and antigen-induced production of TNFa and CXCL1. Furthermore, ET-1 and ovalbumin challenge induced an increase in the number of cells expressing the Gr1(+) markers in the granulocyte gate, CD11c+ markers in the monocyte gate, and CD4(+) and CD45(+) (B220) markers in the lymphocyte gate in an ETA-and ETB-dependent manner, as determined by flow cytometry analysis, suggesting that ET-1 might be involved in the recruitment of neutrophils and other cells in adaptive inflammation. Therefore, the present study demonstrates that ET-1 is an important mediator for neutrophil recruitment in adaptive inflammation via TNF alpha and CXCL1/CXCR2-dependent mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arthritic pain is a serious health problem that affects a large number of patients. Toll-like receptors (TLRs) activation within the joints has been implicated in pathophysiology of arthritis. However, their role in the genesis of arthritic pain needs to be demonstrated. In the present study, it was addressed the participation of TLR2 and TLR4 and their adaptor molecule MyD88 in the genesis of joint hypernociception (a decrease in the nociceptive threshold) during zymosan-induced arthritis. Zymosan injected in the tibio-tarsal joint induced mechanical hypernociception in C57BL/6 wild type mice that was reduced in TLR2 and MyD88 null mice. On the other hand, zymosan-induced hypernociception was similar in C3H/HePas and C3H/Hej mice (TLR4 mutant mice). Zymosan-induced joint hypernociception was also reduced in TNFR1 null mice and in mice treated with IL-1 receptor antagonist or with an antagonist of CXCR1/2. Moreover, the joint production of TNF-alpha, IL-1 beta and CXCL1/KC by zymosan was dependent on TLR2/MyD88 signaling. Investigating the mechanisms by which TNF-alpha, IL-1 beta and CXCL1/KC mediate joint hypernociception, joint administration of these cytokines produced mechanical hypernociception, and they act in an interdependent manner. In last instance, their hypernociceptive effects were dependent on the production of hypernociceptive mediators, prostaglandins and sympathetic amines. These results indicate that in zymosan-induced experimental arthritis, TLR2/MyD88 is involved in the cascade of events of joint hypernociception through a mechanism dependent on cytokines and chemokines production. Thus, TLR2/MyD88 signaling might be a target for the development of novel drugs to control pain in arthritis. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biological complexity of NGF action is achieved by binding two distinct Neurotrophin receptors, TrkA and p75NTR. While several reports have provided lines of evidence on the interaction between TrkA and p75NTR at the plasma membrane, much fewer data are available on the consequence of such an interaction in terms of intracellular signaling. In this study, we have focused on how p75NTR may affect TrkA downstream signaling with respect to neuronal differentiation. Here, we have shown that cooperation between p75NTR and TrkA results in an increased NGF-mediated TrkA autophosphorylation, leads to a sustained activation of ERK1/2 and accelerates neurite outgrowth. Interestingly, neurite outgrowth is concomitant with a selective enhancement of the AP-1 activity and the transcriptional activation of genes such as GAP-43 and p21(CIP/WAF), known to be involved in the differentiation process. Collectively, our results unveil a functional link between the specific expression profile of neurotrophin receptors in neuronal cells and the NGF-mediated regulation of the differentiation process possibly through a persistent ERKs activation and the selective control of the AP-1 activity. In our studies we discuss the functional role of the neurotrophin receptor p75NTR and TrkA in a ligand-dependent signal transduction. It is known that p75NTR is also involved in the mediation of cell death ligand dependent. Here we show for the first time that the membrane receptor p75NTR, upon binding to b- Amyloid (Ab) peptide, is able to transduce a cytotoxic signal through a mechanism very similar to the one adopted by Tumor Necrosis Factor Receptor 1 (TNFR1), when activated by TNFa. We define that in neuroblastoma cell line Ab cytotoxicity signals through a pathway depending on p75NTR death domain (DD), mostly through some specific conserved residues. We identified that TRADD is the first interactor recruiting to the membrane and activates JNK and NF-kB transcription factors. Since Ab is defined as the most important aetiologic element associated with the Alzheimer’s Disease (AD), characterization of the mechanism involved in the mediation of the neurodegeneration can suggest also new therapeutic approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analyse und Modulation kontaktallergischer Reaktionen In der vorliegenden Arbeit wurde in einem ersten Teil die Bedeutung des Tumor-Necrosis-Faktors auf eine Kontaktallergie anhand von TNFR1- und TNFR2-defizienten Mäusen untersucht. Mit Hilfe des Ohrschwellungsverlaufs einer von DNFB ausgelösten kontaktallergischen Reaktion konnte bei TNFR1-defizienten Mäusen eine leichte Überreaktivität und bei TNFR2-defizienten Mäusen eine statistisch abgesicherte Überreaktivität festgestellt werden. Eine ebenfalls überreaktive Schwellungsreaktion konnte bei TNFR2-defizienten Mäusen, die vorher mit Oxazolon behandelt worden waren, beobachtet werden. In den anschließend durchgeführten histologischen Untersuchungen der Langerhans-Zellen aus den TNFR-defizienten Mäusen zeigten sich keine sichtbaren Differenzen in bezug auf MHC II-Expression und Verteilung der Zellen. Eine unterschiedliche Stimulationskapazität konnte bei Langerhans-Zellen, die aus TNFR1- bzw. TNFR2-defizienten Mäusen isoliert worden waren, nicht beobachtet werden.In Migrationsstudien, bei denen FITC als Kontaktallergen von Langerhans-Zellen aufgenommen, prozessiert und nach der Wanderung in die Lymphknoten präsentiert wurde, konnte keine verringerte Anzahl der migrierenden Zellen bei TNFR1-defizienten Mäusen festgestellt werden. Jedoch wurde eine reduzierte Anzahl FITC- und MHC II-doppelt-positiver Zellen aus TNFR2-defizienten Mäusen beobachtet.Um Aufschlüsse über die Expression von TNF-Rezeptoren auf murinen Langerhans-Zellen gewinnen zu können, wurde mit Hilfe von Epidermal Sheets, zytofluorometrischen Analysen und RT-PCR-Analysen von Langerhans-Zellen die Expression der TNF-Rezeptoren untersucht. In Vorversuchen konnte die Expression von TNF-Rezeptoren auf Fibroblasten und T-Zellen gefunden werden. Weiterhin konnten beide TNF-Rezeptoren auf der Keratinozyten-Zellinie PAM 212 nachgewiesen werden. Auf frisch isolierten Langerhans-Zellen, die mittels MicroBeads aus epidermalen Zellsuspensionen gewonnen wurden, konnten keine TNF-Rezeptoren beobachtet werden. Bei kultivierten Langerhans-Zellen konnte dagegen die Expression des TNFR2 festgestellt werden. Mit Hilfe von RT-PCR-Analysen konnte die mRNA des TNFR1 sowohl bei frisch isolierten als auch bei kultivierten Langerhans-Zellen nachgewiesen werden. Im zweiten Teil der Arbeit wurde die Wirkung des Immunmodulators Leflunomid (LF) auf eine Kontaktallergie untersucht. Es konnte eine signifikant geringere Schwellungsreaktion im Zuge einer DNFB-induzierten Kontaktallergie bei LF-behandelten Mäusen festgestellt werden. Bei Experimenten zur Untersuchung des Wirkungszeitraums der inhibitorischen Wirkung von LF bei einer kontaktallergischen Reaktion konnte ein langanhaltender Effekt beobachtet werden. Weiterhin konnte die inhibitorische Wirkung von LF auf eine von Oxazolon induzierte kontaktallergische Schwellungsreaktion und auf eine irritative Schwellungsreaktion beobachtet werden. Wie in einem weiteren Experiment festgestellt werden konnte, wirkte LF größenteils antigenspezifisch.Der Wirkungszeitpunkt von LF konnte in verschiedenen Experimenten, bei dem LF vor, während oder nach der Sensibilisierungsreaktion verabreicht worden war, festgestellt werden. Eine suppressive Wirkung von LF war nur dann zu beobachten, wenn LF während der Sensibilisierungsphase gegeben worden war. Weiterhin konnte in Transfer-Experimenten festgestellt werden, daß die Inhibition der kontaktallergischen Schwellungsreaktion auf naive Tiere übertragbar ist. Außerdem wurden Hinweise gefunden, daß CD8+-T-Zellen als Effektorzellen bei der Suppression eine Rolle spielen. Desweiteren konnten anhand von Untersuchungen von Epidermal Sheets von LF-behandelten Mäusen, die mit DNFB konfrontiert worden waren, keine morphologischen Unterschiede gefunden werden. Nach Erstellung von Migrationsanalysen für die zum Einsatz gekommenen Versuchsgruppen, d.h. sowohl für die LF-behandelten als auch für die Kontroll-Mäuse, konnte kein Einfluß von LF auf die Wanderungsfähigkeit von LC konstatiert werden. Anhand von FACS-Analysen konnte bei einer mit LF kultivierten T-Zellinie eine reduzierte Expression des IL-2-, und Transferrin-Rezeptors, sowie von CD44 beobachtet werden. Schließlich wurde bei Untersuchungen einer topischen Applikationsform von LF festgestellt, daß LF nur oral appliziert wirksam war.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Neurotrophin BDNF ist ein protektiver Faktor, der das Wachstum, die Differenzierung und das Überleben neuronaler Zellen fördert. Neben der neuronalen Expression wird BDNF auch peripher exprimiert, so auch in Endothelzellen. Dort stimuliert BDNF die Angiogenese und fördert das Endothelzellüberleben. Eine Regulation der BDNF-Expression unter pathologischen Bedingungen wie Epilepsie, M. Alzheimer, M. Parkinson, Depression und Ischämie ist bereits mehrfach beschrieben worden. Literaturdaten zeigen veränderte BDNF-Expressionen unter pathologischen Bedingungen zeitgleich mit einem erhöhten Spiegel des Tumornekrosefaktors (TNF-a) bzw. einer Aktivierung der Proteinkinase C (PKC). Ob ein erhöhter TNF-a-Spiegel bzw. die Aktivierung der PKC Ursache der veränderten BDNF-Expression ist, ist bisher noch nicht bekannt. In der vorliegenden Arbeit konnte gezeigt werden, dass sowohl TNF-a als auch eine Aktivierung der PKC in peripheren Endothelzellen die BDNF-Expression konzentrations- und zeitabhängig reduziert. Im Fall von TNF-a wird diese Reduktion über den TNF-a-Rezeptor 1 (TNFR1) vermittelt und auf dem Niveau der Transkription reguliert. Weiterhin konnte gezeigt werden, dass BDNF die Angiogenese-Aktivität von humanen Umbilikalvenen-Endothelzellen (HUVEC) in Abhängigkeit der BDNF-Rezeptoren TrkB und p75NTR stimuliert. TNF-a hingegen reduziert die Angiogenese in HUVEC. Bei der Regulation der BDNF-Expression durch den PKC-aktivierenden Phorbolester Phorbol-12-Myristat-13-Acetat (PMA) konnte eine Beteiligung der PKC-Isoformen d gezeigt werden. Die Verminderung der BDNF-Expression durch PKC-Aktivierung konnte durch Inhibitoren der PKC d aufgehoben werden. PMA hatte keine destabilisierende Wirkung auf die BDNF-mRNA. Auch hier wird BDNF durch PMA auf dem Niveau der Transkription reguliert. Weiterhin ist bisher eine pharmakologische Regulation der BDNF-Expression noch nicht näher untersucht worden. Erstmalig konnte eine Wirkung des b1-Adrenorezeptorblockers Nebivolol auf die BDNF-mRNA-Expression beobachtet werden. Nebivolol erhöht die BDNF-Expression in zerebralen Endothelzellen in vitro und im Mäuseherzen in vivo. Hierbei handelt es sich um eine substanzspezifische Wirkung von Nebivolol, die NO-unabhängig verläuft und nicht über den b3-Adrenozeptor vermittelt wird. Teile der klinisch beobachteten protektiven Wirkungen von Nebivolol könnten auf eine erhöhte BDNF-Expression zurückgeführt werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary fibroblast cultures of canine cranial (CCL) and caudal (CaCL) cruciate ligaments were stimulated with different apoptosis inducers with or without preincubation of the pancaspase inhibitor zVAD.fmk. In contrast to CaCL fibroblasts, fibroblasts from CCL were significantly more susceptible to apoptosis inducers of the intrinsic pathway like doxorubicin, cisplatin and nitric oxide (NO)-donors and to Fas ligand (FasL), an apoptosis inducer of the death receptor pathway. Apoptotic response to staurosporine and the peroxynitrite donor GEA was similar in both ligament fibroblasts. Stimulation with dexamethasone or TNFalpha could not induce apoptosis in CCL and CaCL fibroblasts, in spite of present TNFR1 and TNFR2 receptors. zVAD.fmk was able to prevent apoptosis in up to 66% of CCL cells when treated with FasL, cisplatin or doxorubicin but it had no effect on NO or peroxynitrite induced apoptosis. In conclusion, differential susceptibility to apoptotic triggers like FasL or NO between cranial and caudal cruciate ligament fibroblasts in vitro may be a reflection of the different susceptibilities to degenerative rupture of the ligament. These findings indicate that a general caspase inhibition does not completely protect canine CCL cells from apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activated lymphocytes and lymphoid-tissue inducer cells express lymphotoxins (LTs), which are essential for the organogenesis and maintenance of lymphoreticular microenvironments. Here we describe that T-cell-restricted overexpression of LT induces fulminant thymic involution. This phenotype was prevented by ablation of the LT receptors tumor necrosis factor receptor (TNFR) 1 or LT beta receptor (LTbetaR), representing two non-redundant pathways. Multiple lines of transgenic Ltalphabeta and Ltalpha mice show such a phenotype, which was not observed on overexpression of LTbeta alone. Reciprocal bone marrow transfers between LT-overexpressing and receptor-ablated mice show that involution was not due to a T cell-autonomous defect but was triggered by TNFR1 and LTbetaR signaling to radioresistant stromal cells. Thymic involution was partially prevented by the removal of one allele of LTbetaR but not of TNFR1, establishing a hierarchy in these signaling events. Infection with the lymphocytic choriomeningitis virus triggered a similar thymic pathology in wt, but not in Tnfr1(-/-) mice. These mice displayed elevated TNFalpha in both thymus and plasma, as well as increased LTs on both CD8(+) and CD4(-)CD8(-) thymocytes. These findings suggest that enhanced T cell-derived LT expression helps to control the physiological size of the thymic stroma and accelerates its involution via TNFR1/LTbetaR signaling in pathological conditions and possibly also in normal aging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The T-cell derived cytokine CD40 ligand is overexpressed in patients with autoimmune diseases. Through activation of its receptor, CD40 ligand leads to a tumor necrosis factor (TNF) receptor 1 (TNFR1) dependent impairment of locomotor activity in mice. Here we report that this effect is explained through a promotion of sleep, which was specific to non-rapid eye movement (NREM) sleep while REM sleep was suppressed. The increase in NREM sleep was accompanied by a decrease in EEG delta power during NREM sleep and by a decrease in the expression of transcripts in the cerebral cortex known to be associated with homeostatic sleep drive, such as Homer1a, Early growth response 2, Neuronal pentraxin 2, and Fos-like antigen 2. The effect of CD40 activation was mimicked by peripheral TNF injection and prevented by the TNF blocker etanercept. Our study indicates that sleep-wake dysregulation in autoimmune diseases may result from CD40 induced TNF:TNFR1 mediated alterations of molecular pathways, which regulate sleep-wake behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have shown that proinflammatory cytokines, such as tumor necrosis factor (TNF), are expressed after acute hemodynamic overloading and myocardial ischemia/infarction. To define the role of TNF in the setting of ischemia/infarction, we performed a series of acute coronary artery occlusions in mice lacking one or both TNF receptors. Left ventricular infarct size was assessed at 24 h after acute coronary occlusion by triphenyltetrazolium chloride (TTC) staining in wild-type (both TNF receptors present) and mice lacking either the type 1 (TNFR1), type 2 (TNFR2), or both TNF receptors (TNFR1/TNFR2). Left ventricular infarct size as assessed by TTC staining was significantly greater (P < 0.005) in the TNFR1/TNFR2-deficient mice (77.2% ± 15.3%) when compared with either wild-type mice (46.8% ± 19.4%) or TNFR1-deficient (47.9% ± 10.6%) or TNFR2-deficient (41.6% ± 16.5%) mice. Examination of the extent of necrosis in wild-type and TNFR1/TNFR2-deficient mice by anti-myosin Ab staining demonstrated no significant difference between groups; however, the peak frequency and extent of apoptosis were accelerated in the TNFR1/TNFR2-deficient mice when compared with the wild-type mice. The increase in apoptosis in the TNFR1/TNFR2-deficient mice did not appear to be secondary to a selective up-regulation of the Fas ligand/receptor system in these mice. These data suggest that TNF signaling gives rise to one or more cytoprotective signals that prevent and/or delay the development of cardiac myocyte apoptosis after acute ischemic injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a BCR-ABL expressing human chronic myelogenous leukaemia cell line (K562) was used to investigate the antitumoral potential of a novel lectin (CvL) purified from the marine sponge Cliona varians. CvL inhibited the growth of K562 cells with an IC50 value of 70 g/ml, but was ineffective to normal human peripheral blood lymphocytes in the same range of concentrations tested (180 g/ml). Cell death occurred after 72 h of exposure to the lectin and with sign of apoptosis as analysed by DAPI staining. Investigation of the possible effectors of this process showed that cell death occurred in the presence of Bcl-2 and Bax expression, and involved a caspase-independent pathway. Confocal fluorescence microscopy indicated a major role for the lysosomal protease cathepsin B in mediating cell death. Accordingly, pre-incubation of K562 cells with the cathepsin inhibitor L-trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E-64) abolished the cytotoxic effect of CvL. Furthermore, we found upregulation of tumor necrosis factor receptor 1 (TNFR1) and down-modulation of p65 subunit of nuclear factor kappa B (NFB) expression in CvL-treated cells. These effects were accompanied by increased levels of p21 and downmodulation of pRb, suggesting that CvL is capable of cell cycle arrest. Collectively, these findings suggest that cathepsin B acts as death mediator in CvL-induced cytotoxicity possibly in a still uncharacterized connection with the membrane death receptor pathway

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spondyloarthropathies (or Spondyloarthritides; SpAs) are a group of heterogeneous but genetically related inflammatory disorders in which ankylosing spondylitis (AS) is considered the prototypic form. Among the genes associated with AS, HLA-B27 allele has the strongest association although the cause is still not clear. Rats transgenic for the human HLA-B27 gene (B27 rats) develop a systemic inflammation mirroring the human SpA symptoms and thus provide a useful model to study the contribution of this MHC class I molecule in the disease development. Of particular interest was the observation of absence of arthritis in B27 rats grown in germ-free conditions and a recent theory suggests that microbial dysbiosis and gut inflammation might play a key role in initiating the HLA-B27-associated diseases. Studies in our laboratory have previously demonstrated that HLA-B27 expression alters the development of the myeloid compartment within the bone marrow (BM) in B27 rat and causes loss of a specific dendritic cell (DC) population involved in self-tolerance mechanisms within the gut. The aim of this thesis was to further analyse the myeloid compartment in B27 rats with a particular focus on the osteoclast progenitors and the bone phenotype and to link this to the gut inflammation. In addition, translational studies analysed peripheral monocyte/pre-osteoclasts in AS patients and teased apart the role of cytokines in in vitro human osteoclast differentiation. To understand the dynamics of the myeloid/monocyte compartment within the B27-associated inflammation, monocytes within the bloodstream and BM of B27 rats were characterised via flow cytometry and their ability to differentiate into osteoclast was assessed in vitro. Moreover, an antibiotic regime was used to reduce the B27 ileitis and to evaluate whether this could affect the migration, the phenotype, and the osteoclastogenic potential of B27 monocytes. B27 animals display a systemic and central increase of “inflammatory” CD43low MOs, which are the main contributors to osteoclastogenesis in vitro. Antibiotic treatment reduced ileitis and also reverted the B27 monocyte phenotype. This was also associated with the reduction of the previous described TNFα-enhancement of osteoclast differentiation from B27 BM precursors. These evidences support the idea that in genetically susceptible individuals inflammation in the gut might influence the myeloid compartment within the BM; in other terms, pre-emptively educate precursor cells to acquire specific phenotype end functions after being recruited into the tissue. This might explain the enhanced differentiation of osteoclast from B27 BM progenitors and thus the HLA-B27-associated bone loss. The data shown in this thesis suggest a link between the immunity within the gut and BM haematopoiesis. This provides an attractive and novel research prospective that could help not only to increase the understanding of the HLA-B27-associated aetiopathogenesis but also to unravel the cellular crosstalk that allows the mucosal immunity to program central cell differentiation. Human translational studies on monocyte subsets, cytokines and cytokine network in AS osteoclastogenesis evidenced altered osteoclast differentiation in the presence of IL-22 although no differences in the phenotype and functions of circulating CD14+ monocytes were observed. In addition, studies on the role of TNFα and TNFRs showed a dual role of this inflammatory cytokine in the human OC differentiation. In particular, the activation of TNFR1 in monocytes in early osteoclastogenesis inhibits OC differentiation while TNFα-biasing for TNFR2 on osteoclast precursors mediates the osteoclastogenic effect. Whether similar mechanisms are involved in the TNFα-mediated joint destruction in human rheumatic diseases needs further investigations. This could contribute to the development of novel and more specific anti-TNFα agents for the treatment of bone erosion. In conclusion, taken together my studies support the idea of a crosstalk between the periphery and the central system during the inflammatory response and provide new insights to the mechanisms behind the enhancement of osteoclastogenesis in B27-associated disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a BCR-ABL expressing human chronic myelogenous leukaemia cell line (K562) was used to investigate the antitumoral potential of a novel lectin (CvL) purified from the marine sponge Cliona varians. CvL inhibited the growth of K562 cells with an IC50 value of 70 g/ml, but was ineffective to normal human peripheral blood lymphocytes in the same range of concentrations tested (180 g/ml). Cell death occurred after 72 h of exposure to the lectin and with sign of apoptosis as analysed by DAPI staining. Investigation of the possible effectors of this process showed that cell death occurred in the presence of Bcl-2 and Bax expression, and involved a caspase-independent pathway. Confocal fluorescence microscopy indicated a major role for the lysosomal protease cathepsin B in mediating cell death. Accordingly, pre-incubation of K562 cells with the cathepsin inhibitor L-trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E-64) abolished the cytotoxic effect of CvL. Furthermore, we found upregulation of tumor necrosis factor receptor 1 (TNFR1) and down-modulation of p65 subunit of nuclear factor kappa B (NFB) expression in CvL-treated cells. These effects were accompanied by increased levels of p21 and downmodulation of pRb, suggesting that CvL is capable of cell cycle arrest. Collectively, these findings suggest that cathepsin B acts as death mediator in CvL-induced cytotoxicity possibly in a still uncharacterized connection with the membrane death receptor pathway

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TET2 is a tumor suppressor gene that has been implicated in the epigenetic regulation of gene expression. Inactivating TET2 mutations are common in MDS. These mutations may contribute to early clonal dominance and myeloid transformation, although the exact mechanisms remain to be elucidated. Common to the environment of MDS are elevations in cytokines, such as TNFα and IFN-γ. It was hypothesized that inflammatory cytokines TNF-α and IFN-γ may promote clonal expansion of TET2 mutant progenitors. Adult (10-14 weeks-old) Tet2 wild type (+/+) and Tet2 mutant (-/-) C57BL/6 mice strains were chosen as a model system. Lineage negative cells (Lin-), enriched for hematopoietic stem and progenitor cells, were isolated from Tet2 +/+ and -/- bone marrow and cultured in the absence or presence of varying concentrations of TNFα or IFN-γ in methylcellulose colony formation assays and long term cell culture assays, over a period of 12 and 30 days respectively, and their colony growth, cell count, immunophenotype and resistance to apoptosis were examined. Where indicated, serial re-plating was performed. Expression of apoptotic regulators was assessed by qRT-PCR. In the triplicate experiments, starting with equal densities of Tet2 +/+ and -/- Lin- cells, Tet2 -/- Lin- cells displayed increased resistance to cytokine-induced growth suppression and superior colony forming ability over +/+ in the serial re-plating assays under stress of increasing TNFα or IFN γ. Tet2 -/- progenitors also displayed a lower apoptotic index compared to +/+ under stress of increasing TNFα, suggesting increased resistance to TNFα induced apoptosis. Transcriptional data showed low expression of Tnfr1, Fas and caspase 8, as well as a high expression of Bcl-2 and Iap1 in Tet2 -/- compared to +/+ under stress of TNFα. Tet2-/- also showed increased basal expression of endogenous TNFα mRNA compared to +/+. In the human colony growth assay, the clonal growth of TET2 mutant CFU-GM progenitors was enhanced at low TNFα concentrations. Conclusion: Mutations that promote resistance to environmental stem cell stressors are a known mechanism of clonal selection in aplastic anaemia and JAK2-mutant MPN and our findings suggest that this mechanism may be critical to clonal selection and dominance in MDS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During pregnancy, the maternal cardiovascular system undergoes major adaptation. One of these changes is a 40-50 % increase in circulating blood volume which requires a systemic remodelling of the vasculature in order to regulate maternal blood pressure and maximise blood supply to the developing placenta and fetus. These changes are broadly conserved between humans and rats making them an appropriate pre-clinical model in which to study the underlying mechanisms of pregnancy-dependent cardiovascular remodelling. Whilst women are normally protected against cardiovascular disease; pregnancy marks a period of time where women are susceptible to cardiovascular complications. Cardiovascular disease is the leading cause of maternal mortality in the United Kingdom; in particular hypertensive conditions are among the most common complications of pregnancy. One of the main underlying pathologies of these pregnancy complications is thought to be a failure of the maternal cardiovascular system to adapt. The remodelling of the uterine arteries, which directly supply the maternal-fetal interface, is paramount to a healthy pregnancy. Failure of the uterine arteries to remodel sufficiently can result in a number of obstetric complications such as preeclampsia, fetal growth restriction and spontaneous pregnancy loss. At present, it is poorly understood whether this deficient vascular response is due to a predisposition from existing maternal cardiovascular risk factors, the physiological changes that occur during pregnancy or a combination of both. Previous work in our group employed the stroke prone spontaneously hypertensive rat (SHRSP) as a model to investigate pregnancy-dependent remodelling of the uterine arteries. The SHRSP develops hypertension from 6 weeks of age and can be contrasted with the control strain, the Wistar Kyoto (WKY) rat. The phenotype of the SHRSP is therefore reflective of the clinical situation of maternal chronic hypertension during pregnancy. We showed that the SHRSP exhibited a deficient uterine artery remodelling response with respect to both structure and function accompanied by a reduction in litter size relative to the WKY at gestational day (GD) 18. A previous intervention study using nifedipine in the SHRSP achieved successful blood pressure reduction from 6 weeks of age and throughout pregnancy; however uterine artery remodelling and litter size at GD18 was not improved. We concluded that the abnormal uterine artery remodelling present in the SHRSP was independent of chronic hypertension. From these findings, we hypothesised that the SHRSP could be a novel model of spontaneously deficient uterine artery remodelling in response to pregnancy which was underpinned by other as yet unidentified cardiovascular risk factors. In Chapter 1 of this thesis, I have characterised the maternal, placental and fetal phenotype in pregnant (GD18) SHRSP and WKY. The pregnant SHRSP exhibit features of left ventricular hypertrophy in response to pregnancy and altered expression of maternal plasma biomarkers which have been previously associated with hypertension in human pregnancy. I developed a protocol for accurate dissection of the rat uteroplacental unit using qPCR probes specific for each layer. This allowed me to make an accurate and specific statement about gene expression in the SHRSP GD18 placenta; where oxidative stress related gene markers were increased in the vascular compartments. The majority of SHRSP placenta presented at GD18 with a blackened ring which encircled the tissue. Further investigation of the placenta using western blot for caspase 3 cleavage determined that this was likely due to increased cell death in the SHRSP placenta. The SHRSP also presented with a loss of one particular placental cell type at GD18: the glycogen cells. These cells could have been the target of cell death in the SHRSP placenta or were utilised early in pregnancy as a source of energy due to the deficient uterine artery blood supply. Blastocyst implantation was not altered but resorption rate was increased between SHRSP and WKY; indicating that the reduction in litter size in the SHRSP was primarily due to late (>GD14) pregnancy loss. Fetal growth was not restricted in SHRSP which led to the conclusion that SHRSP sacrifice part of their litter to deliver a smaller number of healthier pups. Activation of the immune system is a common pathway that has been implicated in the development of both hypertension and adverse pregnancy outcome. In Chapter 2, I proposed that this may be a mechanism of interest in SHRSP pregnancy and measured the pro-inflammatory cytokine, TNFα, as a marker of inflammation in pregnant SHRSP and WKY and in the placentas from these animals. TNFα was up-regulated in maternal plasma and urine from the GD18 SHRSP. In addition, TNFα release was increased from the GD18 SHRSP placenta as was the expression of the pro-inflammatory TNFα receptor 1 (Tnfr1). In order to investigate whether this excess TNFα was detrimental to SHRSP pregnancy, a vehicle-controlled intervention study using etanercept (a monoclonal antibody which works as a TNFα antagonist) was carried out. Etanercept treatment at GD0, 6, 12 and 18 resulted in an improvement in pregnancy outcome in the SHRSP with an increased litter size and reduced resorption rate. Furthermore, there was an improved uterine artery function in GD18 SHRSP treated with etanercept which was associated with an improved uterine artery blood flow over the course of gestation. In Chapter 3, I sought to identify the source of this detrimental excess of TNFα by designing a panel for maternal leukocytes in the blood and placenta at GD18. A population of CD3- CD161+ cells, which are defined as rat natural killer (NK) cells, were increased in number in the SHRSP. Intracellular flow cytometry also identified this cell type as a source of excess TNFα in blood and placenta from pregnant SHRSP. I then went on to evaluate the effects of etanercept treatment on these CD3- CD161+ cells and showed that etanercept reduced the expression of CD161 and the cytotoxic molecule, granzyme B, in the NK cells. Thus, etanercept limits the cytotoxicity and potential damaging effect of these NK cells in the SHRSP placenta. Analysing the urinary peptidome has clinical potential to identify novel pathways involved with disease and/or to develop biomarker panels to aid and stratify diagnosis. In Chapter 4, I utilised the SHRSP as a pre-clinical model to identify novel urinary peptides associated with hypertensive pregnancy. Firstly, a characterisation study was carried out in the kidney of the WKY and SHRSP. Urine samples from WKY and SHRSP taken at pre-pregnancy, mid-pregnancy (GD12) and late pregnancy (GD18) were used in the peptidomic screen. In order to capture peptides which were markers of hypertensive pregnancy from the urinary peptidomic data, I focussed on those that were only changed in a strain dependent manner at GD12 and 18 and not pre-pregnancy. Peptide fragments from the uromodulin protein were identified from this analysis to be increased in pregnant SHRSP relative to pregnant WKY. This increase in uromodulin was validated at the SHRSP kidney level using qPCR. Uromodulin has previously been identified to be a candidate molecule involved in systemic arterial hypertension but not in hypertensive pregnancy thus is a promising target for further study. In summary, we have characterised the SHRSP as the first model of maternal chronic hypertension during pregnancy and identified that inflammation mediated by TNFα and NK cells plays a key role in the pathology. The evidence presented in this thesis establishes the SHRSP as a pre-clinical model for pregnancy research and can be continued into clinical studies in pregnant women with chronic hypertension which remains an area of unmet research need.