994 resultados para TISSUE EXPANSION
Resumo:
Co-culture techniques associating both dermal fibroblasts and epidermal keratinocytes have shown to have better clinical outcome than keratinocyte culture alone for the treatment of severe burns. Since fat grafting has been shown to improve scar remodelling, new techniques such as cell-therapy-assisted surgical reconstruction with isolated and expanded autologous adipose-derived stem cells (ASCs) would be of benefit to increase graft acceptation. Therefore, integrating ASCs into standardized procedures for cultured skin grafting could be of benefit for the patient if cell quality and quantity could be maintained. The purpose of this study was to evaluate ASC processing from adult tissue with simple isolation (without enzymatic steps), expansion (low density of 325-3,000 cells/cm2) and storage conditions to assure methods to enhance the cellular resistance when transferred back to the patient. Co-culture with cell-banked skin progenitor cells (FE002-SK2) showed an increase of 40-50% ASCs yield at high passages alongside with a better preservation of morphology, proper adipogenic and osteogenic differentiation and efficient biocompatibility with 3D collagen scaffolds. ASCs can be considered as a valuable additional cell source to be delivered in biological bandages to the patient in a need of tissue reconstruction such as burn patients.
Resumo:
Abstract: The study aimed to isolate, expand, differentiate and characterize progenitor cells existent in the dental pulp of agouti. The material was washed with PBS solution and dissociated mechanically with the aid of a scalpel blade on plates containing culture medium D-MEM/F-12, and incubated at 5% CO2-37⁰C. The growth curve, CFU assay, osteogenic/adipogenic differentiation and characterization were obtained from the isolation. The cells began to be released from the explant tissue around the 7th day of culture. By day 22 of culture, cells reached 80% confluence. At the UFC test, 81 colonies were counted with 12 days of cultivation. The growth curves before and after freezing showed a regular growth with intense proliferation and clonogenic potential. The cell differentiation showed formation of osteoblasts and fat in culture, starting at 15 days of culture in a specific medium. Flow cytometry (FACs) was as follows: CD34 (positive), CD14 (negative), CD45 (negative), CD73 (positive), CD79 (negative), CD90 (positive), CD105 (positive), demonstrating high specificity and commitment of isolated cells with mesenchymal stem cells strains. These results suggest the existence of a cell population of stem cells with mesenchymal features from the isolated tissue in the explants of agouti dental pulp, a potential model for study of stem cell strains obtained from the pulp tissue.
Resumo:
We compare the use of plastically compressed collagen gels to conventional collagen gels as scaffolds onto which corneal limbal epithelial cells (LECs) are seeded to construct an artificial corneal epithelium. LECs were isolated from bovine corneas (limbus) and seeded onto either conventional uncompressed or novel compressed collagen gels and grown in culture. Scanning electron microscopy (SEM) results showed that fibers within the uncompressed gel were loose and irregularly ordered, whereas the fibers within the compressed gel were densely packed and more evenly arranged. Quantitative analysis of LECs expansion across the surface of the two gels showed similar growth rates (p > 0.05). Under SEM, the LECs, expanded on uncompressed gels, showed a rough and heterogeneous morphology, whereas on the compressed gel, the cells displayed a smooth and homogeneous morphology. Transmission electron microscopy (TEM) results showed the compressed scaffold to contain collagen fibers of regular diameter and similar orientation resembling collagen fibers within the normal cornea. TEM and light microscopy also showed that cell–cell and cell–matrix attachment, stratification, and cell density were superior in LECs expanded upon compressed collagen gels. This study demonstrated that the compressed collagen gel was an excellent biomaterial scaffold highly suited to the construction of an artificial corneal epithelium and a significant improvement upon conventional collagen gels.
Resumo:
The experiments were designed to use photochemically cross-linked plastically compressed collagen (PCPCC) gel to support corneal epithelial cells. A plastically compressed collagen (PCC) scaffold was photo cross-linked by UVA in the presence of riboflavin to form a biomaterial with optimal mechanical properties. The breaking force, rheology, surgical suture strength, transparency, ultrastructure, and cell-based biocompatibility were compared between PCPCC and PCC gels. The breaking force increased proportionally with an increased concentration of riboflavin. The stress required to reach breaking point of the PCPCC scaffolds was over two times higher compared to the stress necessary to break PCC scaffolds in the presence of 0.1% riboflavin. Rheology results indicated that the structural properties of PCC remain unaltered after UVA cross-linking. The PCC gels were more easily broken than PCPCC gels when sutured on to bovine corneas. The optical density values of PCPCC and PCC showed no significant differences (p > 0.05). SEM analyses showed that the collagen fibres within the PCPCC gels were similar in morphology to PCC gels. No difference in cell-based biocompatibility was seen between the PCPCC and PCC scaffolds in terms of their ability to support the ex vivo expansion of corneal epithelial cells or their subsequent differentiation evidenced by similar levels of cytokeratin 14. In conclusion, PCPCC scaffold is an optimal biomaterial for use in therapeutic tissue engineering of the cornea.
Resumo:
Limbal epithelial stem cells play a key role in the maintenance and regulation of the corneal surface. Damage or destruction of these cells results in vascularisation and corneal opacity. Subsequent limbal stem cell transplantation requires an ex vivo expansion step and preserving cells in an undifferentiated state remains vital. In this report we seek to control the phenotype of limbal epithelial stem cells by the novel application of compressed collagen substrates. We have characterised the mechanical and surface properties of conventional collagen gels using shear rheology and scanning electron microscopy. In doing so, we provide evidence to show that compressive load can improve the stiffness of collagen substrates. In addition Western blotting and immunohistochemistry display increased cytokeratin 3 (CK3) protein expression relating to limbal epithelial cell differentiation on stiff collagen substrates. Such gels with an elastic modulus of 2900 Pa supported a significantly higher number of cells than less stiff collagen gels (3 Pa). These findings have substantial influence in the development of ocular surface constructs or experimental models particularly in the fields of stem cell research, tissue engineering and regenerative medicine.
Resumo:
Age-related decline in the integrity of mitochondria is an important contributor to the human ageing process. In a number of ageing stem cell populations, this decline in mitochondrial function is due to clonal expansion of individual mitochondrial DNA (mtDNA) point mutations within single cells. However the dynamics of this process and when these mtDNA mutations occur initially are poorly understood. Using human colorectal epithelium as an exemplar tissue with a well-defined stem cell population, we analysed samples from 207 healthy participants aged 17-78 years using a combination of techniques (Random Mutation Capture, Next Generation Sequencing and mitochondrial enzyme histochemistry), and show that: 1) non-pathogenic mtDNA mutations are present from early embryogenesis or may be transmitted through the germline, whereas pathogenic mtDNA mutations are detected in the somatic cells, providing evidence for purifying selection in humans, 2) pathogenic mtDNA mutations are present from early adulthood (<20 years of age), at both low levels and as clonal expansions, 3) low level mtDNA mutation frequency does not change significantly with age, suggesting that mtDNA mutation rate does not increase significantly with age, and 4) clonally expanded mtDNA mutations increase dramatically with age. These data confirm that clonal expansion of mtDNA mutations, some of which are generated very early in life, is the major driving force behind the mitochondrial dysfunction associated with ageing of the human colorectal epithelium.
Resumo:
To study the role of TLR2 in a experimental model of chronic pulmonary infection, TLR2-deficient and wild-type mice were intratracheally infected with Paracoccidioides brasiliensis, a primary fungal pathogen. Compared with control, TLR2(-/-) mice developed a less severe pulmonary infection and decreased NO synthesis. Equivalent results were detected with in vitro-infected macrophages. Unexpectedly, despite the differences in fungal loads both mouse strains showed equivalent survival times and severe pulmonary inflammatory reactions. Studies on lung-infiltrating leukocytes of TLR2(-/-) mice demonstrated an increased presence of polymorphonuclear neutrophils that control fungal loads but were associated with diminished numbers of activated CD4(+) and CD8(+) T lymphocytes. TLR2 deficiency leads to minor differences in the levels of pulmonary type 1 and type 2 cytokines, but results in increased production of KC, a CXC chemokine involved in neutrophils chemotaxis, as well as TGF-beta, IL-6, IL-23, and IL-17 skewing T cell immunity to a Th17 pattern. In addition, the preferential Th17 immunity of TLR2(-/-) mice was associated with impaired expansion of regulatory CD4(+)CD25(+)FoxP3(+) T cells. This is the first study to show that TLR2 activation controls innate and adaptive immunity to P. brasiliensis infection. TLR2 deficiency results in increased Th17 immunity associated with diminished expansion of regulatory T cells and increased lung pathology due to unrestrained inflammatory reactions. The Journal of Immunology, 2009, 183: 1279-1290.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study analyzed occlusal radiographs to compare the transverse changes produced in patients treated with rapid maxillary expansion using two types of appliances. The sample consisted of 31 children aged 7 to 10.6 years, of both genders, with posterior cross-bite. Fifteen children were treated with a tooth-borne expander and 16 were treated with a tooth-tissue-borne expander. Occlusal radiographs obtained at treatment onset and at the end of the retention period were digitized. The following variables were measured: intermolar distance (IMD), interapical distance (IApD), interbase distance (IBaD) and interarm distance (IArD). The results revealed increases in all measurements in both groups after rapid maxillary expansion. Comparison between groups revealed that the increases were greater in patients treated with the tooth-borne expander, except for the IArD measurement, which presented the same increase in both groups. Even though the IMD measurements differed between expanders, they were proportional to the activation of the appliances (IBaD). The increase in the IApD measurement was proportionally greater in the group treated with the tooth-borne expander (0.7:1.0) than in that treated with the tooth-tissue-borne expander (0.4:1.0). It was concluded that both appliances had similar effects, although the tooth-tissue-borne expander produced a lesser opening at the apical region of the incisors.
Resumo:
Articular lesions are still a major challenge in orthopedics because of cartilage's poor healing properties. A major improvement in therapeutics was the development of autologous chondrocytes implantation (ACI), a biotechnology-derived technique that delivers healthy autologous chondrocytes after in vitro expansion. To obtain cartilage-like tissue, 3D scaffolds are essential to maintain chondrocyte differentiated status. Currently, bioactive 3D scaffolds are promising as they can deliver growth factors, cytokines, and hormones to the cells, giving them a boost to attach, proliferate, induce protein synthesis, and differentiate. Using mesenchymal stem cells (MSCs) differentiated into chondrocytes, one can avoid cartilage harvesting. Thus, we investigated the potential use of a platelet-lysate-based 3D bioactive scaffold to support chondrogenic differentiation and maintenance of MSCs. The MSCs from adult rabbit bone marrow (n=5) were cultivated and characterized using three antibodies by flow cytometry. MSCs (1×105) were than encapsulated inside 60μl of a rabbit platelet-lysate clot scaffold and maintained in Dulbecco's Modified Eagle Medium Nutrient Mixture F-12 supplemented with chondrogenic inductors. After 21 days, the MSCs-seeded scaffolds were processed for histological analysis and stained with toluidine blue. This scaffold was able to maintain round-shaped cells, typical chondrocyte metachromatic extracellular matrix deposition, and isogenous group formation. Cells accumulated inside lacunae and cytoplasm lipid droplets were other observed typical chondrocyte features. In conclusion, the usage of a platelet-lysate bioactive scaffold, associated with a suitable chondrogenic culture medium, supports MSCs chondrogenesis. As such, it offers an alternative tool for cartilage engineering research and ACI. © 2013 Informa UK Ltd.
Resumo:
Objective: To compare the hard tissue changes at implants installed applying edentulous ridge expansion (E.R.E.) at sites with a buccal bony wall thickness of 1 or 2 mm.Material and methods: In six Labrador dogs, the first and second maxillary incisors were extracted, and the buccal alveolar bony plates and septa were removed. After 3 months of healing, partial-thickness flaps were dissected, and the E.R.E. was applied bilaterally. Hence, an expansion of the buccal bony crest was obtained in both sides of the maxilla with a displacement of either a 1- or a 2-mm-wide buccal bony plate at the test and control sites, respectively. After 3 months of healing, biopsies were obtained for histological analyses.Results: A buccal vertical resorption of the alveolar crest of 2.3 +/- 0.8 and 2.1 +/- 1.1 mm, and a coronal level of osseointegration at the buccal aspect of 2.7 +/- 0.5 and 2.9 +/- 0.9 mm were found at the test (1 mm) and control (2 mm) sites, respectively. The differences did not reach statistical significance. The mean values of the mineralized bone-to-implant contact (MBIC%) ranged from 62% to 73% at the buccal and lingual sites. No statistically significant differences were found. Horizontal volume gains of 1.8 and 1.1 mm were observed at the test and control sites, respectively, and the difference being statistically significant.Conclusions: Implants installed using the E.R.E. technique yielded a high degree of osseointegration. It is suggested that the displacement of buccal bony plates of 1 mm thickness is preferable compared with that of wider dimensions.
Resumo:
Bone defects at interdental osteotomy sites are as a complication of surgi-cally assisted rapid palatal expansion (SARPE). The replacement of osseoustissue by fibrous connective tissue impairs the spontaneous closure of adiastema between central incisors, and orthodontic tooth movementthrough the defect area may lead to root resorption. Treatment of such asituation requires an orthodontic-surgical approach. In this report, wedescribe the lack of bone healing at the midline osteotomy site after SARPE,which was treated by autogenous bone grafting as assessed by cone beamcomputed tomography. In addition, we discuss factors related to the aetiol-ogy and treatment of a bone defect after SARPE.
Resumo:
Mesenchymal stem cells (MSCs) from human adipose tissue have a great potential for use in cell therapy due to their ease of isolation, expansion, and differentiation, besides the relative acceptance from the ethical point of view. Our intention was to isolate and promote in vitro expansion and differentiation of MSCs from human adipose tissue into cells with a pancreatic endocrine phenotype. Human adipose tissue obtained from patients undergoing abdominal dermolipectomy was digested with type I collagenase. MSCs isolated by plastic adherence and characterized by cytochemistry and FACS were expanded in vitro. MSC differentiation into an endocrine phenotype was induced over 2 to 4 months with high glucose (25 mmol/L) media containing nicotinamide, exendin-4, and 2-mercaptoethanol. Insulin and glucagon expressions were analyzed by immunofluorescence. Cells isolated from human adipose tissue and expanded in vitro expressed MSC markers as confirmed by FACS and cytochemistry. Insulin but not glucagon production by differentiated cells was demonstrated by irnmunofluorescence. MSCs isolated from human adipose tissue were induced to differentiate in vitro into an endocrine phenotype that expressed insulin
Resumo:
Adipose tissue-derived mesenchymal stem cells (ADSC) exhibit immunosuppressive capabilities both in vitro and in vivo. Their use for therapy in the transplant field is attractive as they could render the use of immunosuppressive drugs unnecessary. The aim of this study was to investigate the effect of ADSC therapy on prolonging skin allograft survival. Animals that were treated with a single injection of donor allogeneic ADSC one day after transplantation showed an increase in donor skin graft survival by approximately one week. This improvement was associated with preserved histological morphology, an expansion of CD4(+) regulatory T cells (Treg) in draining lymph nodes, as well as heightened IL-10 expression and down-regulated IL-17 expression. In vitro, ADSC inhibit naïve CD4(+) T cell proliferation and constrain Th-1 and Th-17 polarization. In summary, infusion of ADSC one day post-transplantation dramatically increases skin allograft survival by inhibiting the Th-17 pathogenic immune response and enhancing the protective Treg immune response. Finally, these data suggest that ADSC therapy will open new opportunities for promoting drug-free allograft survival in clinical transplantation.
Resumo:
The aim of this thesis was to investigate the regenerative potential of alternative sources of stem cells, derived from human dental pulp (hDPSCs) and amniotic fluid (hAFSCs) and, specifically, to evaluate their capability to be committed towards osteogenic and myogenic lineages, for the eventual applicability of these stem cells to translational strategies in regenerative medicine of bone and skeletal muscle tissues. The in vitro bone production by stem cells may represent a radical breakthrough in the treatment of pathologies and traumas characterized by critical bone mass defects, with no medical or surgical solution. Human DPSCs and AFSCs were seeded and pre-differentiated on different scaffolds to test their capability to subsequently reach the osteogenic differentiation in vivo, in order to recover critical size bone defects. Fibroin scaffold resulted to be the best scaffold promoting mature bone formation and defect correction when combined to both hDPSCs and hAFSCs. This study also described a culture condition that might allow human DPSCs to be used for human cell therapy in compliance with good manufacturing practices (GMPs): the use of human serum (HS) promoted the expansion and the osteogenic differentiation of hDPSCs in vitro and, furthermore, allowed pre-differentiated hDPSCs to regenerate critical size bone defects in vivo. This thesis also showed that hDPSCs and hAFSCs can be differentiated towards the myogenic lineage in vitro, either when co-cultured with murine myoblasts and when differentiated alone after DNA demethylation treatment. Interestingly, when injected into dystrophic muscles of SCID/mdx mice - animal model of Duchenne Muscular Dystrophy (DMD) - hDPSCs and hAFSCs pre-differentiated after demethylating treatment were able to regenerate the skeletal muscle tissue and, particularly, to restore dystrophin expression. These observations suggest that human DPSCs and AFSCs might be eventually applied to translational strategies, in order to enhance the repair of injured skeletal muscles in DMD patients.