71 resultados para THERMOPLASTICS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research in the field of polymer modified cement has been carried out for the last 70 years or more. Polymers are mostly used to enhance durability and sustainability of cement concrete and in combination with classical construction materials a synergistic effect is obtained. In this work different polymers were added to Portland cement in various proportions and the mechanical and chemical resistance properties of the resultant composites when exposed to chemical environments were studied. Microstructural studies were also carried out to investigate the morphology of the composite and analyse the nature of interactions taking place between the cement and polymer phases. Though most polymers did not improve the compressive strength of the cement paste, it was found that they enhanced the resistance of the virgin cement paste to external chemical environments. The polymers seal the pores in the cement matrix and bridge the microcracks within the composite. Some of the polymers underwent chemical interactions with the cement paste thereby interfering in the hydration of cement. Polymers also decreased the leachability of water soluble components of virgin cement resulting in composites having improved durability. An attempt to correlate the structure of the polymers with the properties of the resultant composites is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic polymers (ionomers) with interesting characteristics are emerging as important commercial polymers. Ionomers have the unique ability to behave as cross-linked materials at ambient temperatures and to melt and flow at elevated temperatures like thermoplastics. The complex permittivity and conductivity of a class of ionomers at microwave frequencies are determined using the cavity perturbation technique and the results are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LLDPE was blended with poly (vinyl alcohol) and mechanical, thermal, spectroscopic properties and biodegradability were investigated. The biodegradability of LLDPE/PVA blends has been studied in two environments, viz. (1) a culture medium containing Vibrio sp. and (2) a soil environment over a period of 15 weeks. Nanoanatase having photo catalytic activity was synthesized by hydrothermal method using titanium-iso-propoxide. The synthesized TiO2 was characterized by X-Ray diffraction (XRD), BET studies, FTIR studies and scanning electron microscopy (SEM). The crystallite size of titania was calculated to be ≈ 6nm from the XRD results and the surface area was found to be about 310m2/g by BET method. SEM shows that nanoanatase particles prepared by this method are spherical in shape. Linear low density polyethylene films containing polyvinyl alcohol and a pro-oxidant (TiO2 or cobalt stearate with or without vegetable oil) were prepared. The films were then subjected to natural weathering and UV exposure followed by biodegradation in culture medium as well as in soil environment. The degradation was monitored by mechanical property measurements, thermal studies, rate of weight loss, FTIR and SEM studies. Higher weight loss, texture change and greater increments in carbonyl index values were observed in samples containing cobalt stearate and vegetable oil. The present study demonstrates that the combination of LLDPE/PVA blends with (I) nanoanatase/vegetable oil and (ii) cobalt stearate/vegetable oil leads to extensive photodegradation. These samples show substantial degradation when subsequent exposure to Vibrio sp. is made. Thus a combined photodegradation and biodegradation process is a promising step towards obtaining a biodegradable grade of LLDPE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The family of semi-crystalline, aromatic, high-temperature thermoplastics known as poly(ether-ketone)s are insoluble in conventional organic solvents, but undergo completely general and quantitatively reversible reactions with alkanedithiols in strong acid media, to give soluble poly(dithioacetal)s, which are readily characterisable by GPC and light scattering techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery of polymers with stimuli responsive physical properties is a rapidly expanding area of research. At the forefront of the field are self-healing polymers, which, when fractured can regain the mechanical properties of the material either autonomically, or in response to a stimulus. It has long been known that it is possible to promote healing in conventional thermoplastics by heating the fracture zone above the Tg of the polymer under pressure. This process requires reptation and subsequent re-entanglement of macromolecules across the fracture void, which serves to bridge, and ‘heal’ the crack. The timescale for this mechanism is highly dependent on the molecular weight of the polymer being studied. This process is in contrast to that required to affect healing in supramolecular polymers such as the plasticised, hydrogen bonded elastomer reported by Leibler et al. The disparity in bond energies between the non-covalent and covalent bonds within supramolecular polymers results in fractures propagating through scission of the comparatively weak supramolecular interactions, rather than through breaking the stronger, covalent bonds. Thus, during the healing process the macromolecules surrounding the fracture site only need sufficient energy to re-engage their supramolecular interactions in order to regenerate the strength of the pristine material. Herein we describe the design, synthesis and optimization of a new class of supramolecular polymer blends that harness the reversible nature of pi-pi stacking and hydrogen bonding interactions to produce self-supporting films with facile healable characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semi-crystalline poly(ether ketone)s are important high-temperature engineering thermoplastics, but are difficult to characterize at the molecular level because of their insolubility in conventional organic solvents. Here we report that polymers of this type, including PEEK, react cleanly at high temperatures with low-volatility aralkyl amines to afford stable, noncrystalline poly(ether-imine)s, which are readily soluble in solvents such as chloroform, THF and DMF and so characterizable by conventional size-exclusion chromatography.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of small quantities of nanoparticles to conventional and sustainable thermoplastics leads to property enhancements with considerable potential in many areas of applications including food packaging 1, lightweight composites and high performance materials 2. In the case of sustainable polymers 3, the addition of nanoparticles may well sufficiently enhance properties such that the portfolio of possible applications is greatly increased. Most engineered nanoparticles are highly stable and these exist as nanoparticles prior to compounding with the polymer resin. They remain as nanoparticles during the active use of the packaging material as well as in the subsequent waste and recycling streams. It is also possible to construct the nanoparticles within the polymer films during processing from organic compounds selected to present minimal or no potential health hazards 4. In both cases the characterisation of the resultant nanostructured polymers presents a number of challenges. Foremost amongst these are the coupled challenges of the nanoscale of the particles and the low fraction present in the polymer matrix. Very low fractions of nanoparticles are only effective if the dispersion of the particles is good. This continues to be an issue in the process engineering but of course bad dispersion is much easier to see than good dispersion. In this presentation we show the merits of a combined scattering (neutron and x-ray) and microscopy (SEM, TEM, AFM) approach. We explore this methodology using rod like, plate like and spheroidal particles including metallic particles, plate-like and rod-like clay dispersions and nanoscale particles based on carbon such as nanotubes and graphene flakes. We will draw on a range of material systems, many explored in partnership with other members of Napolynet. The value of adding nanoscale particles is that the scale matches the scale of the structure in the polymer matrix. Although this can lead to difficulties in separating the effects in scattering experiments, the result in morphological studies means that both the nanoparticles and the polymer morphology are revealed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to study the replacement of currently used thermoplastics by composites reinforced with vegetable fibers with several advantages, mainly better mechanical properties, low weight and competitive cost compared to its counterparts. Extrusion and injection molding processes were studied using polypropylene (PP) matrix. The raw materials used were sugar cane bagasse, elephant grass, wood, milk cartons and recycled polypropylene. The composites were tested for bending, tension, hardness and impact resistance, following ASTM standards. The results obtained were extremely positive since they proved that natural fibers as reinforcement can be an important alternative to replace talc and other fillers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nylon6/ABS binary blends are incompatible and need to be compatibilized to achieve better performance under impact tests. Poly(methyl methacrylate/maleic anhydride) (MMA-MA) is used in this work to compatibilize in situ nylon6/ABS immiscible blends. The MA functional groups, from MMA-MA copolymers, react with NH2 groups giving as products nylon molecules grafted to MMA-MA molecules. Those molecular species locate in the nylon6/ABS blend interfacial region increasing the local adhesion. MMA-MA segments are completely miscible with the SAN rich phase from the ABS. The aim of this work is to study the effects of ABS and compatibilizing agent on the melting and crystallization of nylon6/ABS blends. This effect has been investigated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Incorporation of this compatibilizer and ABS showed little effect on the melting behavior of the PA6 crystalline phase, in general. DMTA analysis confirmed the system immiscibility and showed evidence of compatibility between the two phases, nylon6 and ABS, produced by MMA-MA copolymer presence. The nylon6/ABS blend morphology, observed by transmission electron microscopy (TEM), changes significantly by the addition of the MMA-MA compatibilizer. A better dispersion of ABS in the nylon6 phase is observed. © 2004 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho descreve o desenvolvimento de discos abrasivos e de corte confeccionados com Al2O3 e pó de vidro reciclado para aplicação em ferramenta de corte. Os discos são utilizados para micromizar termoplásticos pós-consumo rígidos e levá-los a diversos tipos de processamento, como por exemplo, a rotomoldagem. Este disco abrasivo utiliza pó de vidro como um aditivo ligante e fundente, e pó de poli(tereftalato de etileno) pós-consumo como plastificante, facilitando um melhor preenchimento do molde. As proporções de pó de vidro reciclado foram analisadas a partir de estudos anteriores com outros minerais, como o diopsídio e o feldspato, já que os estudos com o pó de vidro reciclado substituindo os minerais naturais são recentes. O desenvolvimento dos discos acontece em duas etapas. A primeira é de homogeneização dos componentes com os percentuais calculados. Posteriormente é prensado e levado a mufla até uma temperatura de 900 oC para obter a percolação da resina e a consequente degradação do poli (tereftalato de etileno), pré-sinterização e amolecimento dos silicatos . Após a obtenção destes compostos verdes acontece a segunda e última etapa, que consiste na sinterização dos corpos de prova para a diminuição da porosidade e consequente aumento da resistência mecânica, seguida de acabamento superficial e testes de corte.