979 resultados para THERMAL-STRESS
Resumo:
The purpose of this paper was to observe the use of bedding (wood shavings) in physiological variables that indicate thermal stress in gestating sows. The experiment was conducted in order to evaluate the effect of two types of floor (concrete and wood shavings). Worse microclimatic conditions were observed in bedding systems (P<0.05), with an increase in temperature and enthalpy of 1.14 ºC and 2.37 kJ.kg dry air-1, respectively. The floor temperature at the dirty area was higher in the bedding presence in comparison to its absence. In spite of the worse microclimatic conditions in the bedding, the rectal temperature did not differ significantly (P>0.05) but the skin surface temperature was higher in the bedding systems. The same occurred with the respiratory rates. The physical characteristics of the floor material influenced the rate of heat loss by conductance. Estimated values were 35.04 and 7.99 W m-2 for the conductive heat loss between the animal and floor for treatments with or without bedding, respectively. The use of bedding in sow rearing has a negative impact on microclimatic conditions, what implies in thermoregulatory damages.
Resumo:
This study aimed to identify differences in swine vocalization pattern according to animal gender and different stress conditions. A total of 150 barrow males and 150 females (Dalland® genetic strain), aged 100 days, were used in the experiment. Pigs were exposed to different stressful situations: thirst (no access to water), hunger (no access to food), and thermal stress (THI exceeding 74). For the control treatment, animals were kept under a comfort situation (animals with full access to food and water, with environmental THI lower than 70). Acoustic signals were recorded every 30 minutes, totaling six samples for each stress situation. Afterwards, the audios were analyzed by Praat® 5.1.19 software, generating a sound spectrum. For determination of stress conditions, data were processed by WEKA® 3.5 software, using the decision tree algorithm C4.5, known as J48 in the software environment, considering cross-validation with samples of 10% (10-fold cross-validation). According to the Decision Tree, the acoustic most important attribute for the classification of stress conditions was sound Intensity (root node). It was not possible to identify, using the tested attributes, the animal gender by vocal register. A decision tree was generated for recognition of situations of swine hunger, thirst, and heat stress from records of sound intensity, Pitch frequency, and Formant 1.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Statement of problem. Denture bases may become increasingly weaker as a result of thermal stress and flexural cyclic loading. Information regarding this potential problem and its relationship to the denture base reline is limited.Purpose. This study evaluated the influence of thermal and mechanical stresses on the strength of intact and relined denture bases.Material and methods. Twenty-eight microwave-polymerized (Acron MC) intact denture bases were prepared in the shape of a 3-mm-thick maxillary denture. Additionally, fifty-six 2-mm-thick denture bases were relined with 1 mm of autopolymerizing resin (Tokuyama Rebase Fast II or New Truliner) (n = 28). Intact and relined specimens were divided into 4 groups (n = 7) as follows: without stress (control); a mechanical stress at 0.8 Hz for 10,000 cycles; 5000 thermal cycles between 5 degrees C and 55 degrees C; or a combination thermo-mechanical stress. The specimens were vertically loaded in compression with a rounded rod at 5 mm/min until failure, using a universal testing machine. Data on maximum fracture load (N), deflection at fracture (%), and fracture energy (N-mm) were analyzed by 2-way analysis of variance and Student-Newman-Keuls tests (alpha = .05).Results. The strength of the denture bases relined with New Truliner was not significantly affected by any of the experimental conditions, but comparing the control groups, New Truliner exhibited the lowest maximum fracture load values. The maximum fracture load of intact denture bases (P = .002) and those relined with Tokuyama Rebase Fast II (P = .01) showed a significant decrease after thermal stress. Additionally, cyclic loading significantly decreased the maximum fracture load (P < .001), deflection at fracture (P = .025), and fracture energy (P < .001) of intact denture bases and those relined with Tokuyama Rebase (P values of .002, .039, and .001, respectively).Conclusion. Thermal and mechanical stresses exert deleterious effects on the strength of intact and/or relined denture bases, which vary according to the relining material used.
Resumo:
High critical temperature superconductors are evolving from a scientific research subject into large-scale application devices. In order to meet this development demand they must withstand high current capacity under mechanical loads arising from thermal contraction during cooling from room temperature down to operating temperature (usually 77 K) and due to the electromagnetic forces generated by the current and the induced magnetic field. Among the HTS materials, the Bi2Sr2Ca2Cu3Ox, compound imbedded in an Ag/AgMg sheath has shown the best results in terms of critical current at 77 K and tolerance against mechanical strain. Aiming to evaluate the influence of thermal stress induced by a number of thermal shock cycles we have evaluated the V-I characteristic curves of samples mounted onto semicircular holders with different curvature radius (9.75 to 44.5 mm). The most deformed sample (epsilon = 1.08%) showed the largest reduction of critical current (40%) compared to the undeformed sample and the highest sensitivity to thermal stress (I-c/I-c0 = 0.5). The V-I characteristic curves were also fitted by a potential curve displaying n-exponents varying from 20 down to 10 between the initial and last thermal shock cycle.
Resumo:
The assessment of welfare issues has been a challenge for poultry producers, and lately welfare standards needs to be reached in order to agree with international market demand. This research proposes the use of continuous behavior monitoring in order to contribute for assessing welfare. A software was developed using the language Clarium. The software managed the recording of data as well as the data searching in the database Firebird. Both software and the observational methodology were tested in a trial conducted inside an environmental chamber, using three genetics of broiler breeders. Behavioral pattern was recorded and correlated to ambient thermal and aerial variation. Monitoring video cameras were placed on the roof facing the used for registering the bird's behavior. From video camera images were recorded during the total period when the ambient was bright, and for analyzing the video images a sample of 15min observation in the morning and 15 min in the afternoon was used, adding up to 30 min daily observation. A specific model so-called behavior was developed inside the software for counting specific behavior and its frequency of occurrence, as well as its duration. Electronic identification was recorded for 24h period. Behavioral video recording images was related to the data recorded using electronic identification.. Statistical analysis of data allowed to identify behavioral differences related to the change in thermal environment, and ultimately indicating thermal stress and departure from welfare conditions.
Resumo:
The process of spermatic division and differentiation (spermatogenesis) occurs with intratesticular temperature lower that the corporal temperature and for that is essential that the testicular thermoregulation mechanism occurs properly. For evaluation of the scrotal surface temperature can be used the infrared thermography or testicular sensors, besides that, can be evaluated the blood flux in the spermatic cord through the Doppler ultrasonography. Therefore the objective of this study was the evaluation of the scrotal thermography and Doppler flowmetry of the testicular artery of buffaloes subjected to environmental heat stress. For that were used seven healthy buffaloes, with age of 3 and 4 years, of the Murrah breed. For the surface scrotal temperature measurement (SST, degrees C) and superficial neck temperature (SNT, degrees C) was used the infrared termography (Infra Cam (TM) of the brand FLIR Systems Inc.), then Doppler flowmetry of the testicular artery in the region of the spermatic cord through the ultrasonography (Mylab 5, Esaote (R)) and measurement of the rectal temperature (RT, degrees C). The evaluations were done in two moments: moment 1 (M1) with all the animals in the shade (Temperature=32,2 degrees C) and moment 2 (M2) after 3 hours of exposure of animals to the sun (Temperature=38,7 degrees C To calculate the resistivity index (RI) and pulsatility index (PI), spectra were obtained from pulsed Doppler in three random regions of the testicular artery in the spermatic cord. Data were subjected to analysis of variance (ANOVA) followed by T test, using a significance level of 5%. There was an increase (p<0,05) of RT (37,4 +/- 0,4(a) vs 39,0 +/- 0,3(b); M1 and M2 respectively), SST (30,6 +/- 1,4(a) vs 35,2,0 +/- 1,0(b); M1 and M2 respectively) and SNT (33,1 +/- 2,5(a) vs 38,5,0 +/- 0,3(b); M1 e M2 respectively) e RI (0,67 +/- 0,1(a) vs 0,74 +/- 0,1(b); M1 e M2 respectively) in M2. Increasing trend was observed (0,05>p>0,01) in PI (1,10 +/- 0,4(a) vs 1,23 +/- 0,2(b); M1 and M2 respectively) in M2. The results of the present study allow us to conclude the healthy buffaloes have the scrotal average surface temperature 3 degrees C lower that the body temperature and that the exposure of 3 hours to sun in healthy buffaloes causes thermal stress to the animals and changes in its surface scrotal temperature, and the Doppler flowmetry of the testicular artery demonstrating the importance of thermal management for breeding buffaloes. Besides that, the thermography and the Doppler ultrasonography presented great potential to detect changes of testicular perfusion, being a promising additional test in the buffalo andrological evaluation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In recent years, structural composites manufactured by carbon fiber/epoxy laminates have been employed in large scale in aircraft industries. These structures require high strength under severe temperature changes of -56° until 80 °C. Regarding this scenario, the aim of this research was to reproduce thermal stress in the laminate plate developed by temperature changes and tracking possible cumulative damages on the laminate using ultrasonic C-scan inspection. The evaluation was based on attenuation signals and the C-scan map of the composite plate. The carbon fiber/epoxy plain weave laminate underwent temperatures of -60° to 80 °C, kept during 10 minutes and repeated for 1000, 2000, 3000 and 4000 times. After 1000 cycles, the specimens were inspected by C-scanning. A few changes in the laminate were observed using the inspection methodology only in specimens cycled 3000 times, or so. According to the found results, the used temperature range did not present enough conditions to cumulative damage in this type of laminate, which is in agreement with the macro - and micromechanical theory.
Resumo:
The timing of larval release may greatly affect the survivorship and distribution of pelagic stages and reveal important aspects of life history tactics in marine invertebrates. Endogenous rhythms of breeding individuals and populations are valuable indicators of selected strategies because they are free of the neutral effect of stochastic environmental variation. The high-shore intertidal barnacle Chthamalus bisinuatus exhibits endogenous tidal and tidal amplitude rhythms in a way that larval release would more likely occur during fortnightly neap periods at high tide. Such timing would minimize larval loss due to stranding and promote larval retention close to shore. This fully explains temporal patterns in populations facing the open sea and inhabiting eutrophic areas. However, rhythmic activity breaks down to an irregular pattern in a population within the São Sebastião Channel subjected to large variation of food supply around a mesotrophic average. Peaks of chl a concentration precede release events by 6 d, suggesting resource limitation for egg production within the channel. Also, extreme daily temperatures imposing mortality risk correlate to release rate just 1 d ahead, suggesting a terminal reproductive strategy. Oceanographic conditions apparently dictate whether barnacles follow a rhythmic trend of larval release supported by endogenous timing or, alternatively, respond to the stochastic variation of key environmental factors, resulting in an erratic temporal pattern.
Resumo:
Global climate change is impacting coral reefs worldwide, with approximately 19% of reefs being permanently degraded, 15% showing symptoms of imminent collapse, and 20% at risk of becoming critically affected in the next few decades. This alarming level of reef degradation is mainly due to an increase in frequency and intensity of natural and anthropogenic disturbances. Recent evidence has called into question whether corals have the capacity to acclimatize or adapt to climate changes and some groups of corals showed inherent physiological tolerance to environmental stressors. The aim of the present study was to evaluate mRNA expression patterns underlying differences in thermal tolerance in specimen of the common reef-building coral Pocillopora verrucosa collected at different locations in Bangka Island waters (North Sulawesi, Indonesia). Part of the experimental work was carried out at the CoralEye Reef Research Outpost (Bangka Island). This includes sampling of corals at selected sites and at different depths (3 and 12 m) as well as their experimental exposure to an increased water temperature under controlled conditions for 3 and 7 days. Levels of mRNAs encoding ATP synthase (ATPs) NADH dehydrogenase (NDH) and a 70kDa Heat Shock Protein (HSP70) were evaluated by quantitative real time PCR. Transcriptional profiles evaluated under field conditions suggested an adaptation to peculiar local environmental conditions in corals collected at different sites and at the low depth. Nevertheless, high–depth collected corals showed a less pronounced site-to-site separation suggesting more homogenous environmental conditions. Exposure to an elevated temperature under controlled conditions pointed out that corals adapted to the high depth are more sensitive to the effects of thermal stress, so that reacted to thermal challenge by significantly over-expressing the selected gene products. Being continuously exposed to fluctuating environmental conditions, low-depth adapted corals are more resilient to the stress stimulus, and indeed showed unaffected or down-regulated mRNA expression profiles. Overall these results highlight that transcriptional profiles of selected genes involved in cellular stress response are modulated by natural seasonal temperature changes in P. verrucosa. Moreover, specimens living in more variable habitats (low-depth) exhibit higher basal HSP70 mRNA levels, possibly enhancing physiological tolerance to environmental stressors.
Resumo:
AlGaN/GaN high electron mobility transistors (HEMT) are key devices for the next generation of high-power, high-frequency and high-temperature electronics applications. Although significant progress has been recently achieved [1], stability and reliability are still some of the main issues under investigation, particularly at high temperatures [2-3]. Taking into account that the gate contact metallization is one of the weakest points in AlGaN/GaN HEMTs, the reliability of Ni, Mo, Pt and refractory metal gates is crucial [4-6]. This work has been focused on the thermal stress and reliability assessment of AlGaN/GaN HEMTs. After an unbiased storage at 350 o C for 2000 hours, devices with Ni/Au gates exhibited detrimental IDS-VDS degradation in pulsed mode. In contrast, devices with Mo/Au gates showed no degradation after similar storage conditions. Further capacitance-voltage characterization as a function of temperature and frequency revealed two distinct trap-related effects in both kinds of devices. At low frequency (< 1MHz), increased capacitance near the threshold voltage was present at high temperatures and more pronounced for the Ni/Au gate HEMT and as the frequency is lower. Such an anomalous “bump” has been previously related to H-related surface polar charges [7]. This anomalous behavior in the C-V characteristics was also observed in Mo/Au gate HEMTs after 1000 h at a calculated channel temperatures of around from 250 o C (T2) up to 320 ºC (T4), under a DC bias (VDS= 25 V, IDS= 420 mA/mm) (DC-life test). The devices showed a higher “bump” as the channel temperature is higher (Fig. 1). At 1 MHz, the higher C-V curve slope of the Ni/Au gated HEMTs indicated higher trap density than Mo/Au metallization (Fig. 2). These results highlight that temperature is an acceleration factor in the device degradation, in good agreement with [3]. Interface state density analysis is being performed in order to estimate the trap density and activation energy.
Resumo:
A small heat-shock protein (sHSP) that shows molecular chaperone activity in vitro was recently purified from mature chestnut (Castanea sativa) cotyledons. This protein, renamed here as CsHSP17.5, belongs to cytosolic class I, as revealed by cDNA sequencing and immunoelectron microscopy. Recombinant CsHSP17.5 was overexpressed in Escherichia coli to study its possible function under stress conditions. Upon transfer from 37°C to 50°C, a temperature known to cause cell autolysis, those cells that accumulated CsHSP17.5 showed improved viability compared with control cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cell lysates suggested that such a protective effect in vivo is due to the ability of recombinant sHSP to maintain soluble cytosolic proteins in their native conformation, with little substrate specificity. To test the recent hypothesis that sHSPs may be involved in protection against cold stress, we also studied the viability of recombinant cells at 4°C. Unlike the major heat-induced chaperone, GroEL/ES, the chestnut sHSP significantly enhanced cell survivability at this temperature. CsHSP17.5 thus represents an example of a HSP capable of protecting cells against both thermal extremes. Consistent with these findings, high-level induction of homologous transcripts was observed in vegetative tissues of chestnut plantlets exposed to either type of thermal stress but not salt stress
Resumo:
Tropical scleractinian corals are particularly vulnerable to global warming as elevated sea surface temperatures (SST) disrupt the delicate balance between the coral host and their algal endosymbionts, leading to symbiont expulsion, mass bleaching and mortality. While satellite sensing of SST has proven a good predictor of coral bleaching at the regional scale, there are large deviations in bleaching severity and mortality on the local scale, which are only poorly understood. Here, we show that internal waves play a major role in explaining local coral bleaching and mortality patterns in the Andaman Sea. In spite of a severe region-wide SST anomaly in May 2010, frequent upslope intrusions of cold sub-pycnocline waters due to breaking large amplitude internal waves (LAIW) alleviated heating and mitigated coral bleaching and mortality in shallow LAIW-exposed waters. In LAIW-sheltered waters, by contrast, bleaching susceptible species suffered severe bleaching and total mortality. These findings suggest that LAIW, which are ubiquitous in tropical stratified waters, benefit coral reefs during thermal stress and provide local refugia for bleaching susceptible corals. The swash zones of LAIW may thus be important, so far overlooked, conservation areas for the maintainance of coral diversity in a warming climate. The consideration of LAIW can significantly improve coral bleaching predictions and can provide a valuable tool for coral reef conservation and management.