997 resultados para TECHNIQUES: RADIAL VELOCITIES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present new radial velocity measurements of eight stars that were secured with the spectrograph SOPHIE at the 193 cm telescope of the Haute-Provence Observatory. The measurements allow detecting and characterizing new giant extrasolar planets. The host stars are dwarfs of spectral types between F5 and K0 and magnitudes of between 6.7 and 9.6; the planets have minimum masses Mp sin i of between 0.4 to 3.8 MJup and orbitalperiods of several days to several months. The data allow only single planets to be discovered around the first six stars (HD 143105, HIP 109600, HD 35759, HIP 109384, HD 220842, and HD 12484), but one of them shows the signature of an additional substellar companion in the system. The seventh star, HIP 65407, allows the discovery of two giant planets that orbit just outside the 12:5 resonance in weak mutual interaction. The last star, HD 141399, was already known to host a four-planet system; our additional data and analyses allow new constraints to be set on it. We present Keplerian orbits of all systems, together with dynamical analyses of the two multi-planet systems. HD 143105 is one of the brightest stars known to host a hot Jupiter, which could allow numerous follow-up studies to be conducted even though this is not a transiting system. The giant planets HIP 109600b, HIP 109384b, and HD 141399c are located in the habitable zone of their host star.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. With about 2000 extrasolar planets confirmed, the results show that planetary systems have a whole range of unexpected properties. This wide diversity provides fundamental clues to the processes of planet formation and evolution. Aims: We present a full investigation of the HD 219828 system, a bright metal-rich star for which a hot Neptune has previously been detected. Methods: We used a set of HARPS, SOPHIE, and ELODIE radial velocities to search for the existence of orbiting companions to HD 219828. The spectra were used to characterise the star and its chemical abundances, as well as to check for spurious, activity induced signals. A dynamical analysis is also performed to study the stability of the system and to constrain the orbital parameters and planet masses. Results: We announce the discovery of a long period (P = 13.1 yr) massive (m sini = 15.1 MJup) companion (HD 219828 c) in a very eccentric orbit (e = 0.81). The same data confirms the existence of a hot Neptune, HD 219828 b, with a minimum mass of 21 M⊕ and a period of 3.83 days. The dynamical analysis shows that the system is stable, and that the equilibrium eccentricity of planet b is close to zero. Conclusions: The HD 219828 system is extreme and unique in several aspects. First, ammong all known exoplanet systems it presents an unusually high mass ratio. We also show that systems like HD 219828, with a hot Neptune and a long-period massive companion are more frequent than similar systems with a hot Jupiter instead. This suggests that the formation of hot Neptunes follows a different path than the formation of their hot jovian counterparts. The high mass, long period, and eccentricity of HD 219828 c also make it a good target for Gaia astrometry as well as a potential target for atmospheric characterisation, using direct imaging or high-resolution spectroscopy. Astrometric observations will allow us to derive its real mass and orbital configuration. If a transit of HD 219828 b is detected, we will be able to fully characterise the system, including the relative orbital inclinations. With a clearly known mass, HD 219828 c may become a benchmark object for the range in between giant planets and brown dwarfs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: Several studies suggest that the activity level of a planet-host star can be influenced by the presence of a close-by orbiting planet. Moreover, the interaction mechanisms that have been proposed, magnetic interaction and tidal interaction, exhibit a very different dependence on the orbital separation between the star and the planet. A detection of activity enhancement and characterization of its dependence on planetary orbital distance can, in principle, allow us to characterize the physical mechanism behind the activity enhancement. Methods: We used the HARPS-N spectrograph to measure the stellar activity level of HD 80606 during the planetary periastron passage and compared the activity measured to that close to apastron. Being characterized by an eccentricity of 0.93 and an orbital period of 111 days, the system's extreme variation in orbital separation makes it a perfect target to test our hypothesis. Results: We find no evidence for a variation in the activity level of the star as a function of planetary orbital distance, as measured by all activity indicators employed: log(R'HK), Hα, NaI, and HeI. None of the models employed, whether magnetic interaction or tidal interaction, provides a good description of the data. The photometry revealed no variation either, but it was strongly affected by poor weather conditions. Conclusions: We find no evidence for star-planet interaction in HD 80606 at the moment of the periastron passage of its very eccentric planet. The straightforward explanation for the non-detection is the absence of interaction as a result of a low magnetic field strength on either the planet or the star and of the low level of tidal interaction between the two. However, we cannot exclude two scenarios: i) the interaction can be instantaneous and of magnetic origin, being concentrated on the substellar point and its surrounding area; and ii) the interaction can lead to a delayed activity enhancement. In either scenario, a star-planet interaction would not be detectable with the dataset described in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Tissue Doppler may be used to quantify regional left ventricular function but is limited by segmental variation of longitudinal velocity from base to apex and free to septal walls. We sought to overcome this by developing a composite of longitudinal and radial velocities. Methods and Results. We examined 82 unselected patients undergoing a standard dobutamine echocardiogram. Longitudinal velocity was obtained in the basal and mid segments of each wall using tissue Doppler in the apical views. Radial velocities were derived in the same segments using an automated border detection system and centerline method with regional chords grouped according to segment location and temporally averaged. In 25 patients at low probability of coronary disease, the pattern of regional variation in longitudinal velocity (higher in the septum) was the opposite of radial velocity (higher in the free wall) and the combination was homogenous. In 57 patients undergoing angiography, velocity in abnormal segments was less than normal segments using longitudinal (6.0 +/- 3.6 vs 9.0 +/- 2.2 cm/s, P = .01) and radial velocity (6.0 +/- 4.0 vs 8.0 +/- 3.9 cm/s, P = .02). However, the composite velocity permitted better separation of abnormal and normal segments (13.3 +/- 5.6 vs 17.5 +/- 4.2 cm/s, P = .001). There was no significant difference between the accuracy of this quantitative approach and expert visual wall motion analysis (81% vs 84%, P = .56). Conclusion: Regional variation of uni-dimensional myocardial velocities necessitates site-specific normal ranges, probably because of different fiber directions. Combined analysis of longitudinal and radial velocities allows the derivation of a composite velocity, which is homogenous in all segments and may allow better separation of normal and abnormal myocardium.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Searches for field horizontal-branch (FHB) stars in the halo of the Galaxy in the past have been carried out by several techniques, such as objective-prism surveys and visual or infrared photometric surveys. By choosing adequate color criteria, it is possible to improve the efficiency of identifying bona fide FHB stars among the other objects that exhibit similar characteristics, such as main-sequence A-stars, blue stragglers, subdwarfs, etc. In this work, we report the results of a spectroscopic survey carried out near the south Galactic pole intended to validate FHB stars originally selected from the HK objective-prism survey of Beers and colleagues, based on near-infrared color indices. A comparison between the stellar spectra obtained in this survey with theoretical stellar atmosphere models allows us to determine T(eff), log g, and [Fe/H] for 13 stars in the sample. Stellar temperatures were calculated from measured (B-V)(o), when this measurement was available (16 stars). The color index criteria adopted in this work are shown to correctly classify 30% of the sample as FHB, 25% as non-FHB (main-sequence stars and subdwarfes), whereas 40% could not be distinguished between FHB and main-sequence stars. We compare the efficacy of different color criteria in the literature intended to select FHB stars, and discuss the use of the Mg II 4481 line to estimate the metallicity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spectrophotometric distances in the K band have been reported by different authors for a number of obscured Galactic H II regions. Almost 50% of them show large discrepancies compared to the classical method using radial velocities measured in the radio spectral region. In order to provide a crucial test of both methods, we selected a target that does not present particular difficulty for any method and which has been measured by as many techniques as possible. The W3 star-forming complex, located in the Perseus arm, offers a splendid opportunity for such a task. We used the Near-Infrared Integral Field Spectrograph on the Frederick C. Gillett Gemini North telescope to classify candidate ""naked photosphere"" OB stars based on Two Micron All Sky Survey photometry. Two of the targets are revealed to be mid-O-type main-sequence stars leading to a distance of d = 2.20 kpc. This is in excellent agreement with the spectrophotometric distance derived in the optical band (d = 2.18 pc) and with a measurement of the W3 trigonometric parallax (d = 1.95 kpc). Such results confirm that the spectrophotometric distances in the K band are reliable. The radio-derived kinematic distance, on the contrary, gives a distance twice as large (d = 4.2 kpc). This indicates that this region of the Perseus arm does not follow the Galactic rotation curve, and this may also be the case for other H II regions for which discrepancies have been found.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Current commercially available Doppler lidars provide an economical and robust solution for measuring vertical and horizontal wind velocities, together with the ability to provide co- and cross-polarised backscatter profiles. The high temporal resolution of these instruments allows turbulent properties to be obtained from studying the variation in radial velocities. However, the instrument specifications mean that certain characteristics, especially the background noise behaviour, become a limiting factor for the instrument sensitivity in regions where the aerosol load is low. Turbulent calculations require an accurate estimate of the contribution from velocity uncertainty estimates, which are directly related to the signal-to-noise ratio. Any bias in the signal-to-noise ratio will propagate through as a bias in turbulent properties. In this paper we present a method to correct for artefacts in the background noise behaviour of commercially available Doppler lidars and reduce the signal-to-noise ratio threshold used to discriminate between noise, and cloud or aerosol signals. We show that, for Doppler lidars operating continuously at a number of locations in Finland, the data availability can be increased by as much as 50 % after performing this background correction and subsequent reduction in the threshold. The reduction in bias also greatly improves subsequent calculations of turbulent properties in weak signal regimes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

20 years after the discovery of the first planets outside our solar system, the current exoplanetary population includes more than 700 confirmed planets around main sequence stars. Approximately 50% belong to multiple-planet systems in very diverse dynamical configurations, from two-planet hierarchical systems to multiple resonances that could only have been attained as the consequence of a smooth large-scale orbital migration. The first part of this paper reviews the main detection techniques employed for the detection and orbital characterization of multiple-planet systems, from the (now) classical radial velocity (RV) method to the use of transit time variations (TTV) for the identification of additional planetary bodies orbiting the same star. In the second part we discuss the dynamical evolution of multi-planet systems due to their mutual gravitational interactions. We analyze possible modes of motion for hierarchical, secular or resonant configurations, and what stability criteria can be defined in each case. In some cases, the dynamics can be well approximated by simple analytical expressions for the Hamiltonian function, while other configurations can only be studied with semi-analytical or numerical tools. In particular, we show how mean-motion resonances can generate complex structures in the phase space where different libration islands and circulation domains are separated by chaotic layers. In all cases we use real exoplanetary systems as working examples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

gamma Cas is the prototypical classical Be star and is recently best known for its variable hard X-ray emission. To elucidate the reasons for this emission, we mounted a multiwavelength campaign in 2010 centered around four XMM-Newton observations. The observational techniques included long baseline optical interferometry (LBOI) from two instruments at CHARA, photometry carried out by an automated photometric telescope and H alpha observations. Because gamma Cas is also known to be in a binary, we measured radial velocities from the H alpha line and redetermined its period as 203.55 +/- 0.20 days and its eccentricity as near zero. The LBOI observations suggest that the star's decretion disk was axisymmetric in 2010, has an system inclination angle near 45 degrees, and a larger radius than previously reported. In addition, the Be star began an "outburst" at the beginning of our campaign, made visible by a brightening and reddening of the disk during our campaign and beyond. Our analyses of the new high resolution spectra disclosed many attributes also found from spectra obtained in 2001 (Chandra) and 2004 (XMM-Newton). As well as a dominant hot (approximate to 14 keV) thermal component, the familiar attributes included: (i) a fluorescent feature of Fe K even stronger than observed at previous times; (ii) strong lines of N VII and Ne XI lines indicative of overabundances; and (iii) a subsolar Fe abundance from K-shell lines but a solar abundance from L-shell ions. We also found that two absorption columns are required to fit the continuum. While the first one maintained its historical average of 1 x 10(21) cm(-2), the second was very large and doubled to 7.4 x 10(23) cm(-2) during our X-ray observations. Although we found no clear relation between this column density and orbital phase, it correlates well with the disk brightening and reddening both in the 2010 and earlier observations. Thus, the inference from this study is that much (perhaps all?) of the X-ray emission from this source originates behind matter ejected by gamma Cas into our line of sight.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims. Spectroscopic, polarimetric, and high spectral resolution interferometric data covering the period 1995-2011 are analyzed to document the transition into a new phase of circumstellar disk activity in the classical Be-shell star 48 Lib. The objective is to use this broad data set to additionally test disk oscillations as the basic underlying dynamical process. Methods. The long-term disk evolution is described using the V/R ratio of the violet and red emission components of H alpha and Br gamma, radial velocities and profiles of He I and optical metal shell lines, as well as multi-band BVRI polarimetry. Single-epoch broad-band and high-resolution interferometric visibilities and phases are discussed with respect to a classical disk model and the given baseline orientations. Results. Spectroscopic signatures of disk asymmetries in 48 Lib vanished in the late nineties but recovered some time between 2004 and 2007, as shown by a new large-amplitude and long-duration V/R cycle. Variations in the radial velocity and line profile of conventional shell lines correlate with the V/R behavior. They are shared by narrow absorption cores superimposed on otherwise seemingly photospheric He I lines, which may form in high-density gas at the inner disk close to the photosphere. Large radial velocity variations continued also during the V/R-quiet years, suggesting that V/R may not always be a good indicator of global density waves in the disk. The comparison of the polarization after the recovery of the V/R activity shows a slight increase, while the polarization angle has been constant for more than 20 years, placing tight limits on any 3-D precession or warping of the disk. The broad H-band interferometry gives a disk diameter of (1.72 +/- 0.2) mas (equivalent to 15 stellar radii), position angle of the disk (50 +/- 9)degrees and a relatively low disk flattening of 1.66 +/- 0.3. Within the errors the same disk position angle is derived from polarimetric observations and from photocenter shifts across Br gamma. The high-resolution interferometric visibility and phase profiles show a double or even multiple-component structure. A preliminary estimate based on the size of the Br gamma emitting region indicates a large diameter for the disk (tens of stellar radii). Overall, no serious contradiction between the observations and the disk-oscillation model could be construed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE Obtaining new details of radial motion of left ventricular (LV) segments using velocity-encoding cardiac MRI. METHODS Cardiac MR examinations were performed on 14 healthy volunteers aged between 19 and 26 years. Cine images for navigator-gated phase contrast velocity mapping were acquired using a black blood segmented κ-space spoiled gradient echo sequence with a temporal resolution of 13.8 ms. Peak systolic and diastolic radial velocities as well as radial velocity curves were obtained for 16 ventricular segments. RESULTS Significant differences among peak radial velocities of basal and mid-ventricular segments have been recorded. Particular patterns of segmental radial velocity curves were also noted. An additional wave of outward radial movement during the phase of rapid ventricular filling, corresponding to the expected timing of the third heart sound, appeared of particular interest. CONCLUSION The technique has allowed visualization of new details of LV radial wall motion. In particular, higher peak systolic radial velocities of anterior and inferior segments are suggestive of a relatively higher dynamics of anteroposterior vs lateral radial motion in systole. Specific patterns of radial motion of other LV segments may provide additional insights into LV mechanics. ADVANCES IN KNOWLEDGE The outward radial movement of LV segments impacted by the blood flow during rapid ventricular filling provides a potential substrate for the third heart sound. A biphasic radial expansion of the basal anteroseptal segment in early diastole is likely to be related to the simultaneous longitudinal LV displacement by the stretched great vessels following repolarization and their close apposition to this segment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Context. The young associations offer us one of the best opportunities to study the properties of young stellar and substellar objects and to directly image planets thanks to their proximity (<200 pc) and age (≈5−150 Myr). However, many previous works have been limited to identifying the brighter, more active members (≈1 M_⊙) owing to photometric survey sensitivities limiting the detections of lower mass objects. Aims. We search the field of view of 542 previously identified members of the young associations to identify wide or extremely wide (1000−100 000 au in physical separation) companions. Methods. We combined 2MASS near-infrared photometry (J, H, K) with proper motion values (from UCAC4, PPMXL, NOMAD) to identify companions in the field of view of known members. We collated further photometry and spectroscopy from the literature and conducted our own high-resolution spectroscopic observations for a subsample of candidate members. This complementary information allowed us to assess the efficiency of our method. Results. We identified 84 targets (45: 0.2−1.3 M_⊙, 17: 0.08−0.2 M_⊙, 22: <0.08 M_⊙) in our analysis, ten of which have been identified from spectroscopic analysis in previous young association works. For 33 of these 84, we were able to further assess their membership using a variety of properties (X-ray emission, UV excess, Hα, lithium and K I equivalent widths, radial velocities, and CaH indices). We derive a success rate of 76–88% for this technique based on the consistency of these properties. Conclusions. Once confirmed, the targets identified in this work would significantly improve our knowledge of the lower mass end of the young associations. Additionally, these targets would make an ideal new sample for the identification and study of planets around nearby young stars. Given the predicted substellar mass of the majority of these new candidate members and their proximity, high-contrast imaging techniques would facilitate the search for new low-mass planets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. Abundance variations in moderately metal-rich globular clusters can give clues about the formation and chemical enrichment of globular clusters. Aims. CN, CH, Na, Mg and Al indices in spectra of 89 stars of the template metal-rich globular cluster M71 are measured and implications on internal mixing are discussed. Methods. Stars from the turn-off up to the Red Giant Branch (0.87 < log g < 4.65) observed with the GMOS multi-object spectrograph at the Gemini-North telescope are analyzed. Radial velocities, colours, effective temperatures, gravities and spectral indices are determined for the sample. Results. Previous findings related to the CN bimodality and CN-CH anticorrelation in stars of M71 are confirmed. We also find a CN-Na correlation, and Al-Na, as well as an Mg(2)-Al anticorrelation. Conclusions. A combination of convective mixing and a primordial pollution by AGB or massive stars in the early stages of globular cluster formation is required to explain the observations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. It is not known how many globular clusters may remain undetected towards the Galactic bulge. Aims. One of the aims of the VISTA Variables in the Via Lactea (VVV) Survey is to accurately measure the physical parameters of the known globular clusters in the inner regions of the Milky Way and search for new ones, hidden in regions of large extinction. Methods. From deep near-infrared images, we derive deep JHK(S)-band photometry of a region surrounding the known globular cluster UKS 1 and reveal a new low-mass globular cluster candidate that we name VVV CL001. Results. We use the horizontal-branch red clump to measure E(B-V) similar to 2.2 mag, (m - M)(0) = 16.01 mag, and D = 15.9 kpc for the globular cluster UKS 1. On the basis of near-infrared colour-magnitude diagrams, we also find that VVV CL001 has E(B-V) similar to 2.0, and that it is at least as metal-poor as UKS 1, although its distance remains uncertain. Conclusions. Our finding confirms the previous projection that the central region of the Milky Way harbours more globular clusters. VVV CL001 and UKS 1 are good candidates for a physical cluster binary, but follow-up observations are needed to decide if they are located at the same distance and have similar radial velocities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims. We investigate the time-varying patterns in line profiles, V/R, and radial velocity of the Be star HD 173948 (lambda Pavonis). Methods. Time series analyses of radial velocity, V/R, and line profiles of He I, Fe II, and Si II were performed with the Cleanest algorithm. An estimate of the stellar rotation frequency was derived from the stellar mass and radius in the Roche limit by adopting an aspect angle i derived from the fittings of non-LTE model spectra affected by rotation. The projected rotation velocity, necessary as input for the spectral synthesis procedure, was evaluated from the Fourier transform of the rotation profiles of all neutral helium lines in the optical range. Results. Emission episodes in Balmer and He i lines, as well as V/R cyclic variations, are reported for spectra observed in year 1999, followed by a relatively quiescent phase (2000) and then again a new active epoch (2001). From time series analyses of line profiles, radial velocities, and V/R ratios, four signals with high confidence levels are detected: nu(1) = 0.17 +/- 0.02, nu(2) = 0.49 +/- 0.05, nu(3) = 0.82 +/- 0.03, and nu(4) = 1.63 +/- 0.04 c/d. We interpret nu 4 as a non-radial pulsation g-mode, nu 3 as a signal related to the orbital timescale of ejected material, which is near the theoretical rotation frequency 0.81 c/d inferred from the fitting of the models taken into account for gravity darkening. The signals nu(1) and nu(2) are viewed as aliases of nu(3) and nu(4).